MAPAN

pp 1–8 | Cite as

Measurement of Percentage Depth Dose and Half Value Layer of the Rhizophora spp. Particleboard Bonded by Eremurus spp. to 60, 80 and 100 kVp Diagnostic X-rays

  • Ehsan Taghizadeh Tousi
  • Ali Aboarrah
  • Sabar Bauk
  • Rokiah Hashim
  • Mohamad Suhaimi Jaafar
Original Paper
  • 10 Downloads

Abstract

Some researchers formerly provided the mechanical, physical, and attenuation properties of the fabricated EremurusRhizophora spp. particleboard phantom. In this study, the percentage depth dose (PDD) and the half value layer (HVL) of fabricated EremurusRhizophora spp. particleboard phantom were determined and compared with those of Perspex and water phantoms, with the same standard phantom size (30 cm × 30 cm × 30 cm) in the diagnostic energy range using TLD 100H. In addition, the energy range of X-ray was in diagnostic range of energy. The results indicated that the PDD and HVL of the fabricated EremurusRhizophora spp. particleboard phantom were close to those of the Perspex phantom. Likewise, the PDD and HVL of the fabricated EremurusRhizophora spp. particleboard phantom were found in good agreement with those of water phantom. According to the results of this study, the fabricated EremurusRhizophora spp. particleboard phantom can be used as medical phantoms.

Keywords

Medical phantom Percentage depth dose (PDD) Half value layer (HVL) Fabricated EremurusRhizophora spp. particleboard 

Notes

Compliance with Ethical Standards

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. [1]
    E.T. Tousi, M.M. Firoozabadi and M. Shiva, Determination of the thorium potential in Shah-Kooh area in Iran by NAA and comparison with the results of ICP and XRF techniques, Measurement, 90 (2016) 20–24.CrossRefGoogle Scholar
  2. [2]
    V.S. Jokic, L. Zupunski and V. Gordanic, Probability health risk assessment and measurement uncertainty estimation related to internal exposure to natural radionuclides from soil, MAPAN-J. Metrol. Soc India, 31(2) (2016) 97–105.CrossRefGoogle Scholar
  3. [3]
    H. Romdhana, A. Mejri, F.B. Hatira and A.H. Hamzaoui, A study of the fractionation dose effect on the radiation response of windose B3 dosimeter, MAPAN-J. Metrol. Soc India, 32(4) (2017) 305–310.CrossRefGoogle Scholar
  4. [4]
    F.M. Khan, The physics of radiation therapy. Lippincott Williams & Wilkins, Philadelphia, (2010).Google Scholar
  5. [5]
    E.T. Tousi, S. Bauk, R. Hashim, M.S. Jaafar, A. Abuarra, K.S.A. Aldroobi and A.M. Al-Jarrah, Measurement of mass attenuation coefficients of Eremurus–Rhizophora spp. particleboards for X-ray in the 16.63–25.30 keV energy range, Radiat. Phys. Chem., 103 (2014) 119–125.ADSCrossRefGoogle Scholar
  6. [6]
    E.T. Tousi, H. Rokiah, S. Bauk, M.S. Jaafar, A. Abuarra, A. Al-Jarrah, B. Ababneh, A.T. Tousi and K. Aldroobi, Characterization of the Rhizophora spp. particleboard as a tissue-equivalent phantom material bonded with bio-based adhesive. Maderas Cienc. Tecnol., 17(3) (2015) 305.Google Scholar
  7. [7]
    E.T. Tousi, R. Hashim, S. Bauk, M.S. Jaafar, A.M. Al-Jarrah, H. Kardani, A. Abuarra, A.M. Hamdan and K.S.A. Aldroobi, A study of the properties of animal-based wood glue, Adv. Mater. Res., 935 (2014) 133–137.CrossRefGoogle Scholar
  8. [8]
    E.T. Tousi, R. Hashim, S. Bauk and M.S. Jaafar, Evaluation of the mass attenuation coefficient and effective atomic number of the Eremurus spp. root in mammography energy range, IOSR J. Appl. Phys., 9(1) (2017) 100–104.Google Scholar
  9. [9]
    C.W.A.C.W. Sudin, A.A. Tajuddin and D.A. Bradley, Evaluation of tissue-equivalent media for dosimetric studies. Paper presented at the proceeding of local seminar activities on radiation physics, biophysics and medical physics. Universiti Malaya, Kuala Lumpur, Malaysia, (1988).Google Scholar
  10. [10]
    A. Abuarra, S. Bauk, R. Hashim, S. Kandaiya, E.T. Tousi and K. Aldroobi, Microstructure examination, elemental composition analysis of gum arabic bonded Rhizophora spp. particleboards and their potential as tissue equivalent material, Int. J. Chem. Environ. Biol. Sci. (IJCEBS), 2(1) (2014) 2320–4087.Google Scholar
  11. [11]
    A. Abuarra, S. Bauk, R. Hashim, S. Kandaiya, E.T. Tousi and B. Ababneh, XRF technique for the evaluation of gum arabic bonded Rhizophora spp. particleboards as tissue equivalent material, Int. J. Appl. Phys. Math., 4(3) (2014) 201–204.CrossRefGoogle Scholar
  12. [12]
    D.A. Bradley, A.A. Tajuddin, C.W.A.C.W. Sudin and S. Bauk, Photon attenuation studies on tropical hardwoods, Int. J. Radiat. Appl. Instrum. Part A Appl. Radiat. Isot., 42(8) (1991) 771–773.CrossRefGoogle Scholar
  13. [13]
    B.Z. Shakhreet, S. Bauk, A.A. Tajuddin and A. Shukri, Mass attenuation coefficients of natural Rhizophora spp. wood for X-rays in the 15.77–25.27 keV range, Radiat. Prot. Dosim., 135(1) (2009) 47–53.CrossRefGoogle Scholar
  14. [14]
    A.A. Tajuddin, C.W.A.C.W. Sudin and D.A. Bradley, Radiographic and scattering investigation on the suitability of Rhizophora spp. as tissue-equivalent medium for dosimetric study, Radiat. Phys. Chem., 47(5) (1996) 739–740.ADSCrossRefGoogle Scholar
  15. [15]
    E.M.E.A. Munem, Radiation dose distribution measurements around brachytherapy sources in water and Rhizophora spp phantom. Universiti Sains Malaysia, Penang, Malaysia, (1999).Google Scholar
  16. [16]
    D.P. Banjade, A.A. Tajuddin and A. Shukri, A study of Rhizophora spp. wood phantom for dosimetric purposes using high-energy photon and electron beams, Appl. Radiat. Isot., 55(3) (2001) 297–302.CrossRefGoogle Scholar
  17. [17]
    P. Hogarth and P.J. Hogarth, The biology of mangroves and seagrasses, 2nd edn. Oxford University Press, Oxford.CrossRefMATHGoogle Scholar
  18. [18]
    E.T. Tousi, R. Hashim, S. Bauk, M.S. Jaafar, A.M.H. Abuarra and B. Ababneh, Some properties of particleboards produced from Rhizophora spp. as a tissue-equivalent phantom material bonded with Eremurus spp., Measurement, 54 (2014) 14–21.CrossRefGoogle Scholar
  19. [19]
    M.W. Marashdeh, R. Hashim, A.A. Tajuddin, S. Bauk and O. Sulaiman, Effect of particle size on the characterization of binderless particleboard made from Rhizophora spp. Mangrove wood for use as phantom material, BioResources, 6(4) (2011) 4028–4044.Google Scholar
  20. [20]
    N. MacDonald, Woodworking. Cengage Learning, New York, (2013).Google Scholar
  21. [21]
    M.W. Marashdeh, S. Bauk, A.A. Tajuddin and R. Hashim, Measurement of mass attenuation coefficients of Rhizophora spp. binderless particleboards in the 16.59–25.26 keV photon energy range and their density profile using x-ray computed tomography, Appl. Radiat. Isot., 70(4) (2012) 656–662.CrossRefGoogle Scholar
  22. [22]
    A. Abuarra, R. Hashim, S. Bauk, S. Kandaiya and E.T. Tousi, Fabrication and characterization of gum Arabic bonded Rhizophora spp. particleboards, Mater. Des., 60 (2014) 108–115.CrossRefGoogle Scholar
  23. [23]
    R. Hashim, A. Siti Hazneza, O. Sulaiman, I. Norli, I.M. Hakimi, M.J. Hasnah and U. Salmiah, Extractable formaldehyde from waste medium density fibreboard, J. Trop. For. Sci., 21(1) (2009) 25–33.Google Scholar
  24. [24]
    B.T. Surani, The suitability of PF, UF, and PRF resins in term of structure and attenuation properties to be used in Rhizophora spp. particleboard phantom. Universiti Sains Malaysia, Penang, Malaysia, (2008).Google Scholar
  25. [25]
    K.T. Ngu, Fabrication of 1.0 g/cm3 Rhizophora spp. particleboard and determination of their mass attenuation coefficient. Universiti Sains Malaysia, Penang, Malaysia, (2009).Google Scholar
  26. [26]
    NCI, Formaldehyde and cancer risk. National Cancer Institute, National Institutes of Health, The United States Department of Health and Human Services, (2011). http://www.cancer.gov/cancertopics/factsheet/Risk/formaldehyde. Accessed Sep 2013.
  27. [27]
    R. Hashim, W.N.A.W. Nadhari, O. Sulaiman, F. Kawamura, S. Hiziroglu, M. Sato, T. Sugimoto, T.G. Seng and R. Tanaka, Characterization of raw materials and manufactured binderless particleboard from oil palm biomass, Mater. Des., 32(1) (2011) 246–254.CrossRefGoogle Scholar
  28. [28]
    R. Hashim, N. Said, J. Lamaming, M. Baskaran, O. Sulaiman, M. Sato, S. Hiziroglu and T. Sugimoto, Influence of press temperature on the properties of binderless particleboard made from oil palm trunk, Mater. Des., 32(5) (2011) 2520–2525.CrossRefGoogle Scholar
  29. [29]
    Y. Liu and K. Li, Chemical modification of soy protein for wood adhesives, Macromol. Rapid Commun., 23(13) (2002) 739–742.CrossRefGoogle Scholar
  30. [30]
    E.T. Tousi, R. Hashim, S. Bauk, M.S. Jaafar, A.M.H. Abuarra, A.M. Al-Jarrah, B. Ababneh, A.T. Tousi and K.S.A. Aldroobi, Characterization of the Rhizophora particleboard as a tissue-equivalent phantom material bonded with bio-based adhesive, Maderas Cienc. Tecnol., (2015).  https://doi.org/10.4067/s0718-221x2015005000029.Google Scholar
  31. [31]
    JIS, JIS A 5908: particleboards. Japanese Standard Association, Japan, (2003).Google Scholar
  32. [32]
    P.S. Rao, S.C. Misra and P. Gangadharan, A reference standard for protection level calibrations in photon energy range 30 keV to 2 MeV, MAPAN-J. Metrol. Soc India, 4 (1989) 123.Google Scholar
  33. [33]
    I. Gamboa-Debuen and M. Brandan, Influence of annealing on TLD-100 response to 5.3 MeV α-particles, Appl. Radiat. Isot., 47(1) (1996) 111–114.CrossRefGoogle Scholar
  34. [34]
    A. Pradhan, J. Lee and J. Kim, Further studies on higher temperature TL glow peaks of 7LiF: Mg, Ti, Appl. Radiat. Isot., 67(6) (2009) 1078–1083.CrossRefGoogle Scholar
  35. [35]
    J. Rodríguez-Cortés, T. Rivera-Montalvo, L. Villaseñor Navarro, O. Flores-López, J. Roman and J. Hernandez-Oviedo, Thermoluminescent dosimetry in total body irradiation, Appl. Radiat. Isot., 71 (2012) 35–39.CrossRefGoogle Scholar
  36. [36]
    S. Mckinlay, Thermoluminescence dosimetry: medical physics handbook 5. Adam Hilger, Bristol, (1981).Google Scholar
  37. [37]
    F.H. Attix, Introduction to radiological physics and radiation dosimetry. Wiley-VCH, New York, (2008).Google Scholar
  38. [38]
    V. Pagonis, G. Kētēs, G. Kitis and C. Furetta, Numerical and practical exercises in thermoluminescence. Springer, New York, (2006).Google Scholar
  39. [39]
    C. Furetta, Handbook of thermoluminescence, 2nd edn. World Scientific, Singapore, (2010).Google Scholar
  40. [40]
    G. Busuoli, General characteristic of TL materials. In: M. Oberhofer and A. Scharmann (eds) Applied thermoluminescence dosimetry: lectures of a course held at the Joint Research Centre, Ispra, Italy, 12–16 November 1979. Hilger, pp 83–97, (1981).Google Scholar
  41. [41]
    A.F. Maia and L.V. Caldas, Response of TL materials to diagnostic radiology X radiation beams, Appl. Radiat. Isot., 68(4) (2010) 780–783.CrossRefGoogle Scholar
  42. [42]
    IAEA-457, Dosimetry in diagnostic radiology: an international code of practice. Vienna, Austria, (2007).Google Scholar
  43. [43]
    V.F. Andolina and S.L. Lillé, Mammographic imaging: a practical guide. Lippincott Williams & Wilkins, Philadelphia, (2010).Google Scholar
  44. [44]
    R. Hendrick, L. Bassett, M. Botsco, D. Deibel, S. Feig, J. Gray, A. Haus, R. Heinlein, E. Kitts and J. McCrohan, Mammography quality control manual. American College of Radiology, Reston, VA, (1999).Google Scholar
  45. [45]
    L. Hatcher, Step-by-step basic statistics using SAS: student guide, vol 1. SAS Institute, New York, (2003).Google Scholar
  46. [46]
    L.D. Stern, A visual approach to spss for windows: a guide to SPSS 17.0, 2nd edn. Alyn & Bacon, Toronto, (2010).Google Scholar

Copyright information

© Metrology Society of India 2018

Authors and Affiliations

  • Ehsan Taghizadeh Tousi
    • 1
  • Ali Aboarrah
    • 2
  • Sabar Bauk
    • 3
  • Rokiah Hashim
    • 4
  • Mohamad Suhaimi Jaafar
    • 5
  1. 1.University of Torbat HeydariehTorbat HeydariehIran
  2. 2.Department of Bio and Medical SciencesAn-Najah National UniversityNablusPalestine
  3. 3.Physics Section, School of Distance EducationUniversiti Sains MalaysiaPenangMalaysia
  4. 4.Division of Bioresource, Paper and Coatings Technology, School of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
  5. 5.School of PhysicsUniversiti Sains MalaysiaPenangMalaysia

Personalised recommendations