Skip to main content

Advertisement

Log in

Studies on Lower Tropospheric Aerosols over New Delhi, India Using Lidar

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

This study reports the altitude distribution of physical and optical properties of aerosols in the lower troposphere over the urban tropical region Delhi measured using an UV (355 nm) lidar which is capable of operating in both day and night time. It is observed that there is strong seasonal variation in the altitude (from 0.4 to 4 km) distribution of aerosols during the observation period from July 2009 to May 2010. The aerosol extinction coefficient and depolarization values range from 0.02 to 0.6 km−1 and 0.02 to 0.05 respectively during the observation period. Relatively high aerosol extinction coefficient values were observed below 1.5 km altitude during the autumn season may be due the festivals and bio-mass burning activities. In all the seasons except winter, the aerosol loading from 0.4 km to 4 km range contributes more than 38% to the atmospheric column optical depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.M. Haywood, and K.P. Shine, Multi-spectral calculations of the radiative forcing of tropospheric sulphate and soot aerosols using a column model, Q. J. R. Meteorol. Soc., 123 (1997), 1907–1930.

  2. Y. J. Kaufman, D. Tanre, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B. M. Hermann, M. D. King, and P. M. Teillet, Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect, J. Geophys. Res., 102 (1997), 16,815–16,830.

    Article  ADS  Google Scholar 

  3. S. Twomey, Pollution and the planetary albedo, Atmos. Environ., 8 (1974), 1251–1256.

    Article  ADS  Google Scholar 

  4. B. A Albrecht, Aerosols, cloud microphysics, and fractional cloudiness, Science, 245 (1989), 1227–1230.

    Article  ADS  Google Scholar 

  5. J. Haywood, and O. Boucher, Estimates of the direct and indirect radiative forcing due to tropospheric aerosols, A review, Rev. Geophys., 38 (2000), 513–543.

    Article  ADS  Google Scholar 

  6. J. Warner, and S. Twomey, The production of cloud nuclei by cane fires and the effect on cloud droplet concentrations, J. Atmos. Sci., 24 (1967), 704–706.

    Article  ADS  Google Scholar 

  7. R. D. Borys, D. H. Lowenthal, M. A.Wetzel, F. Herrera, A. Gonzalez, and J. Harris, Chemical and microphysical properties of marine stratiform cloud in the North Atlantic, J. Geophys. Res., 103 (1998), 22 073–22 085.

  8. D. Rosenfeld and I. M. Lensky, Satellite-based insights into precipitation formation processes in continental and maritime convective clouds, Bull. Amer. Meteor. Soc., 79 (1998), 2457–2476.

    Article  Google Scholar 

  9. D. Rosenfeld, D., TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall, Geophys. Res. Lett., 26 (1999), 3105–3108.

    Article  ADS  Google Scholar 

  10. D. Rosenfeld, D., Suppression of rain and snow by urban and industrial air pollution, Science, 287 (2000), 1793–1796.

    Article  ADS  Google Scholar 

  11. A. J. Heymsfield, and G. M. McFarquhar, Microphysics of INDOEX clean and polluted trade cumulus clouds, J. Geophys. Res., 106 (2001), 28653–28673.

    Article  ADS  Google Scholar 

  12. M. O. Andreae, D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, Smoking rain clouds over the Amazon, Science, 303 (2004), 1337–1342.

    Article  ADS  Google Scholar 

  13. I. L. Jirak, and W. R. Cotton, Effect of air pollution on precipitation along the Front Range of the Rocky Mountains, J. Appl. Meteor. Climatol., 45 (2006), 236–245.

    Article  ADS  Google Scholar 

  14. P. Chylek, M. K. Dubey, U. Lohmann et al., Aerosol indirect effect over the Indian Ocean, Geophys. Res. Lett., 33 (2006), L06806.

    ADS  Google Scholar 

  15. S. Singh, B. Singh, B.S. Gera, M.K. Srivastava, H.N. Dutta, S.C. Garg, and R.Singh, A study of aerosol optical depth in central Indian region (17.3°–28.6°N) during ISRO-GBP field campaign, Atmos. Environ,. 40 (2006), 6494-6503.

    Article  ADS  Google Scholar 

  16. N.K. Lodhi, S.N. Beegum, S. Singh, and K. Kumar, Aerosol climatology at Delhi in the western Indo-Gangetic Plain: Microphysics, long-term trends, and source strengths, J. Geophys. Res., 118 (2013), 1361–1375.

    Google Scholar 

  17. S.Singh, S.Nath, R. Kohli, and R.Singh, Aerosols over Delhi during pre-monsoon months: Characteristics and effects on surface radiation forcing, Geophys. Res. Lett., 32 (2005).

  18. H. Jethva H, S.K. Satheesh S K, and J. Srinivasan J, Seasonal variability of aerosols over the Indo-Gangetic basin, J. Geophys. Res., 110 (D21) (2005), 0148–0227.

    Article  Google Scholar 

  19. A.K. Prasad, and R.P. Singh R P, Change in aerosol parameters during major dust storm events (2001-2005) over the Indo-Gangetic Basin using AERONET and MODIS data, J. Geophys. Res., 110 (2007), D21206.

    Google Scholar 

  20. R. Gautam, Z. Liu, R.P. Singh, N.C. Hsu, Two contracting dust-dominant periods over India observed from MODIS and CALIPSO data, Geophys. Res. Lett., 36 (2009), 1-5.

    Google Scholar 

  21. M. V. S. N. Prasad, C. Sharma, B. C. Arya, T. K. Mandal, S. Singh, M. J. Kulshrestha, R. Agnihotri, S. K. Mishra and S. K. Sharma, Experimental Facilities to Monitor Various Types of Atmospheric Parameters in the Radio and Atmospheric Sciences Division (RASD) of CSIR-National Physical Laboratory, Mapan, 28(3), (2013), 193–203.

    Article  Google Scholar 

  22. S. K. Sharma, T. K. Mandal, Rohtash, M.Kumar, N. C. Gupta, H.Pathak, R. Harit, and M.Saxena, Measurement of ambient ammonia over the National Capital Region of Delhi, India, Mapan, 29 (3) (2014), 165-173.

    Article  Google Scholar 

  23. S. K.Sharma, T. K.Mandal, C.Sharma, J. C. Kuniyal, R. Joshi, P. P. Dhyani, Rohtash, A.Sen, H.Ghayas, N.C. Gupta, P.Sharma, M.Saxena, A.Sharma, B. C. Arya, and A.Kumar, Measurements of Particulate (PM2.5), BC and Trace Gases Over the Northwestern Himalayan Region of India, Mapan, 29 (4) (2014), 243-253.

  24. P.K. Dubey, S.L. Jain, B.C. Arya, P.S.Kulkarni, Depolarization ratio measurement using single multiplier tube in micro pulse lidar, Rev. Sci. Instrum., 80 (2009), 05311.

    Article  Google Scholar 

  25. P.K. Dubey, S.L. Jain, B.C. Arya, Y.N. Ahammed, K. Arun, D.K. Shukla, and S.K. Pavan, Indigenous design and development of a micro-pulse lidar for atmospheric studies, Int. J. Remote. Sens., 32 (2) (2011), 337-351.

    Article  ADS  Google Scholar 

  26. R. Maurya, P.K. Dubey, D.K. Shukla, K. Arun, B.C. Arya, S.L. Jain, Comparison of indigenously developed micro pulse polarization lidar with EZ lidar profiles, Appl. Phys. B., 104 (2011) 975-982.

    Article  ADS  Google Scholar 

  27. M. Komppula, T. Mielonen, A. Arola, K. Korhonen, H. Lihavainen, A.P. Hyvarinen, H.R. Baars, D. Althausen, A. Ansmann, D. Muller, T.S. Panwar, R.K. Hooda, V.P. Sharma, V.M. Kerminen, K.E.J. Lehtinen, and Y. Viisanen, One year of Raman lidar measurements in Gual Pahari EUCARRI site close to New Delhi India –Seasonal characteristics of the aerosol vertical structure, Atmos. Chem. Phys. 12 (2012), 4513-4524.

    Article  ADS  Google Scholar 

  28. P. Zieger, E. Kienast Sjogren, M. Starace, J. von Bismarck, N. Bukowiecki, U. Baltensperger, F. G. Wienhold, T. Peter, T. Ruhtz, M. Collaud Coen, L. Vuilleumier, O. Maier, E. Emili, C. Popp, and E. Weingartner, Spatial variation of aerosol optical properties around the high-alpine site Jungfraujoch (3580 m a.s.l.), Atmos. Chem. Phys., 12 (2012), 7231–7249.

    Article  ADS  Google Scholar 

  29. C. Rolf, M. Kramer, C. Schiller, M. Hildebrandt, and M. Riese, Lidar observation and model simulation of a volcanic-ash-induced cirrus cloud during the Eyjafjallajokull eruption, Atmos. Chem. Phys., 12 (2012), 10281–10294.

    Article  ADS  Google Scholar 

  30. A.K. Srivnastava, S.N. Tripathi, S. Dey, V.P. Kanawade, and S. Tiwari, Inferring aerosol types over the Indo-Gangetic Basin from ground based sun photometer measurements, Atmos. Res. 109–110 (2012), 64–75.

    Article  Google Scholar 

  31. F.D. Fernald, Analysis of atmospheric lidar observations: some comments, Appl. Opt., 23 (1984) 652- 653.

    Article  ADS  Google Scholar 

  32. M.N. Sasi and K. Sengupta, A Reference Atmosphere for Indian Equatorial Zone from Surface to 80 km, Scientific Report SPL: SR: 006:85, Space Physics Laboratory, Vikram Sarabhai Space Centre, Kerala, India (1985).

    Google Scholar 

  33. M. Osborn, M. Pittis, K. Powell and M. McCornick, SAM II aerosol measurements during the 1989 AASE, Geophys. Res. Lett., 17 (1990), 397-400.

  34. B.A. Bodhaine, B.N. Wood, E.G. Dutton, and J.R. Slusser,, On Rayleigh optical depth calculations, J. Atmos. Ocean Tech., 16 (1999), 1854-1861.

    Article  Google Scholar 

  35. M. Morys, F.M. Mims, S. Hagerup, S.E. Anderson, A. Baker, J. Kia, and T. Walkup, Design, calibration, and performance of Microtops II handheld ozone monitor and Sun photometer, J. Geophys. Res., 106 (14) (2001), 573-14,582.

  36. D. Tanre, Y.J. Kaufman, M. Herman, M.Mattoo, Remote sensing of aerosol properties over oceans using MODIS/EOS spectral irradiances, J. Geophys. Res., 102, 971-988.

  37. Y.J. Kaufman, D. Tanre´, L.A. Remer, E.F. Vermote, A. Chu, B.N. Holben, Operational remote sensing of tropospheric aerosol over land from EOS moderate- resolution imaging spectroradiometer, J. Geophys. Res., 102 (1997), 17052-17065.

    ADS  Google Scholar 

  38. R. Levy, L.A. Remer, S. Mattoo, E. Vermote, Y.J. Kaufman, Second generation algorithm for retrieving aerosol properties over land from MODIS spectral reflectance, J. Geophys. Res., 112 (2007), D13211.

    ADS  Google Scholar 

  39. K. Soni, S. Singh, T. Bano, R.S. Tanwar, and S. Nath,, Variations in single scattering albedo and angstrom absorption exponent during different seasons over Delhi, Atmos. Environ., 44 (2010), 4355-4363.

    Article  ADS  Google Scholar 

  40. A.K. Srivastava, S. Singh, S. Tiwari, V.P. Kanawade, and D.S. Bisht, Variation between near-surface and columnar aerosol characteristics during the winter and summer at Delhi in the Indo-Gangetic Basin, J. Atmos. and Sol. Terr. Phys., 77 (2012), 57-66.

    Article  ADS  Google Scholar 

  41. A.K. Srivastava, S. Tiwari, P.C.S. Devara, D.S. Bisht, M.K. Srivastava, S.N, Tripathi, P. Goloub, and B.N. Holben, Pre-monsoon aerosol characteristics over the Indo-Gangetic Basin: Implications to climatic impact, Annal. Geophy., 29 (2011), 789-804.

  42. A.K. Srivastava, V.K. Soni, S. Singh, V.P. Kanawade, N. Singh, S. Tiwari, and S.D. Attri, An early South Asian dust storm during March 2012 and its impacts on Indian Himalayan foothills: A case study, Sci. of Tot. Environ., 493 (2014), 526-534.

    Article  Google Scholar 

  43. A.K. Attri, U. Kumar, V.K. Jain, Formation of ozone by fireworks, Nature 411 (2001), 1015.

    Article  ADS  Google Scholar 

  44. U.C. Kulshrestha, T. Nageswara Rao, S. Azhaguvel, and M.J. Kulshrestha, Emissions and accumulation of metals in the atmosphere due to crackers and sparkles during Diwali festival in India, Atmos. Environ., 38 (2004), 4421-4425.

    Article  ADS  Google Scholar 

  45. P. Cinzia, T. Suresh, C. Maria, D.T. Stefano, R. Elena, C. Silvia, Chemical characterization of atmospheric PM in Delhi, India, during different periods of the year including Diwali festival, Atmos. Pollut. Res., 2 (2011), 418-427.

    Article  Google Scholar 

  46. A.R. Sharma, S.K. Kharol, K.V.S. Badarinath, and D. Singh,, Impact of agriculture crop residue burning on atmospheric aerosol loading-A case study over Punjab State, India, Ann. Geophys., 28 (2010), 367-379.

    Article  ADS  Google Scholar 

  47. R. Gautam, N.C. Hsu, M. Kafatos, and S.C. Tsay, Influences of winter haze on fog/low cloud over the Indo-Gangetic plains, J. Geophys. Res., 112 (2007), D05207.

    Article  ADS  Google Scholar 

  48. G. Pandithurai, S. Dipu, K.K. Dani, S. Tiwar, D.S. Bish, and P.C.S. Devara, Aerosol radiative forcing during dust events over New Delhi, India, J. Geophys. Res., 113 (2008), D13209.

    Article  ADS  Google Scholar 

  49. S.K. Das, J.P. Chen, M.Venkat Ratnam, A. Jayaraman, Investigation of radiative effects of the optically thick dust layer over the Indian tropical region, Ann. Geophys., 31 (2013), 647-663.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, NPL and Head, ESBMD for the encouragement and infrastructure facilities to undertake the present study. The authors are thankful to M/s Leosphere, France for providing the lidar system and Dr.Sachidanand Singh, NPL for providing the Microtops data. We thank CSIR Network project PSC 0112 for necessary financial support. The MODIS satellite data is obtained from the Giovanni online data system, developed and maintained by the NASA GES DISC. The back trajectories are obtained from the NOAA HYSPLIT model. Authors acknowledge the mission scientists and Principal investigators who provided the data used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Radhakrishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhakrishnan, S.R., Arya, B.C., Sharma, C. et al. Studies on Lower Tropospheric Aerosols over New Delhi, India Using Lidar. MAPAN 32, 183–191 (2017). https://doi.org/10.1007/s12647-017-0213-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-017-0213-9

Keywords

Navigation