Advertisement

MAPAN

, Volume 32, Issue 3, pp 193–198 | Cite as

Design and Construction of a Helical Resonator for Delivering Radio Frequency to an Ion Trap

  • N. Batra
  • S. Panja
  • S. De
  • A. Roy
  • S. Majhi
  • S. Yadav
  • A. Sen Gupta
Original Paper

Abstract

Supplying high voltage radio frequency (RF) is a critical part of ion trapping system due to impedance mismatching between RF source and the ion trap. A helical resonator has been constructed in order to deliver narrow bandwidth and high voltage RF to the ion trap for stable confinement of ions. The performances of the helical resonator have been studied for different capacitive load of the ion trap. Both the resonant frequency and quality factor of the resonator show strong dependence on external capacitive loads.

Keywords

Ion trap Resonator Resonant frequency Q-factor 

References

  1. [1]
    J. I. Ciracand and P. Zoller, Quantum Computations with Cold Trapped Ions, Phys. Rev. Lett., 74 (1995) 4091-4094.ADSCrossRefGoogle Scholar
  2. [2]
    D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King and D. M. Meekhof, Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions, J. Res. Natl. Inst. Stand. Technol., 103 (1998) 259-328.CrossRefzbMATHGoogle Scholar
  3. [3]
    H. Haeffner, C. F. Roos and R. Blatt, Quantum Computing with Trapped Ions, Phys. Rep., 469 (2008) 155-203.ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    M. Pons, V. Ahufinger, C. Wunderlich, A. Sanpera, S. Braungardt, A. Sen(De), U. Sen and M. Lewenstein, Trapped Ion Chain as a Neural Network: Error Resistant Quantum Computation, Phys. Rev. Lett., 98(2007) 023003.ADSCrossRefGoogle Scholar
  5. [5]
    A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras and T. Schaetz, Simulating A Quantum Magnet with Trapped Ions, Nature Phys., 4 (2008) 757-761.ADSCrossRefGoogle Scholar
  6. [6]
    M. Johanning, A. F. Varon and C. Wunderlich, Quantum Simulations with Cold Trapped Ions, J. Phys. B, 42 (2009) 154009.ADSCrossRefGoogle Scholar
  7. [7]
    R. J. Clark, T. Lin, K. R. Brown and I. L. Chuang, A Two-Dimensional Lattice Ion Trap for Quantum Simulation, J. Appl. Phys., 105 (2009) 013114.ADSCrossRefGoogle Scholar
  8. [8]
    K. Kim, M.-S. Chang, S. Korenblit, R. Islam, E. E. Edwards, J. Freericks, G.-D. Lin, L. Duan and C. Monroe, Quantum Simulation of Frustrated Ising Spins with Trapped Ions, Nature, 465 (2010) 590-593.ADSCrossRefGoogle Scholar
  9. [9]
    Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist and L. Hollberg, Absolute Frequency Measurements of the Hg+ and Ca Optical Clock Transitions with a Femtosecond Laser, Phys. Rev. Lett., 86 (2001) 4996-4999.ADSCrossRefGoogle Scholar
  10. [10]
    S. A. Webster, P. Taylor, M. Roberts, G. P. Barwood and P. Gill, Kilohertz-Resolution Spectroscopy of the 2S1/22F7/2 Electric Octupole Transition in a Single 171Yb+ Ion, Phys. Rev. A, 65 (2002) 052501.ADSCrossRefGoogle Scholar
  11. [11]
    C. Tamm, S. Weyers, B. Lipphardt and E. Peik, Stray-Field-Induced Quadrupole Shift and Absolute Frequency of the 688-THz 171Yb+ Single-Ion Optical Frequency Standard, Phys. Rev. A, 80 (2009) 043403.ADSCrossRefGoogle Scholar
  12. [12]
    M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hansel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera and Ph. Laurent, Absolute Frequency Measurement of the 40Ca+ 4 s 2S1/2–3d 2D5/2 Clock Transition, Phys. Rev. Lett., 102 (2009) 023002.ADSCrossRefGoogle Scholar
  13. [13]
    G. G. Dolnikowski, M. J. Kristo, C.G. Enke and J.T. Watson, Ion-Trapping Technique for Ion Molecule Reaction Studies in the Center Quadrupole of a Triple Quadrupole Mass Spectrometer, Int. J. Mass Spec. Ion Proc., 82 (1988) 1.ADSCrossRefGoogle Scholar
  14. [14]
    M. W. Senko, C. L. Hendrickson, M. R. Emmett, S. D. H. Shi, and A. G. Marshall, External Accumulation of Ions for Enhanced Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, J. Am. Soc. Mass Spec., 8 (1997) 970-976.CrossRefGoogle Scholar
  15. [15]
    K. S. Lowery, R. H. Griffey, G. H. Kruppa, J. P. Speir, and S. A. Hofstadler, Multipole Storage Assisted Dissociation, A Novel In-Source Dissociation Technique for Electrospray Generated Ions, Rapid Comm. Mass Spec. 12 (1998) 1957-1961.Google Scholar
  16. [16]
    W. Paul, O. Osberghaus and E. Fischer. Forschungsbe. Wirtsch.-Verkehrminist. Nordrhein-Westfalen, 1958, 415.Google Scholar
  17. [17]
    F. G. Major, V. N. Gheorghe and G. Werth, Charged Particle Traps, Springer Series on Atomic, Optical and Plasma Physics, (2010).Google Scholar
  18. [18]
    M. Roberts, Spectroscopy of a Single Ytterbium Ion. Ph.D. Thesis, Imperial College, University of London, and NationalPhysical Laboratory, Teddington, January (1997).Google Scholar
  19. [19]
    D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano and D. J. Wineland, Minimization of Ion Micro Motion in a Paul Trap, J. Appl. Phys. 83 (1998) 5025.Google Scholar
  20. [20]
    P. K. Ghosh, Ion Traps. Clarendon Press, Oxford, (1995).Google Scholar
  21. [21]
    K. Pant, P. Arora, S. Yadav and A. Sen Gupta, Generation of Quadrupole Magnetic Field for Trapping Atoms in Cs Fountain Being Developed at NPL India. MAPAN-J. Metrol. Soc India, 26 (2011) 285–294.Google Scholar
  22. [22]
    A. Agarwal and A. Sen Gupta, Frequency and Intensity Control of Lasers to Cool and Control Caesium Atoms. MAPAN-J. Metrol. Soc India, 27 (2012) 169–173.Google Scholar
  23. [23]
    P. Arora, S.B. Purnapatra, A. Acharya, R. Kumar and A. SenGupta, Measurement of Temperature of Atomic Cloud Using Time of-Flight Technique. MAPAN-J. Metrol. Soc India, 27 (2012) 31–39.Google Scholar
  24. [24]
    S. De, N. Batra, S. Chakraborty, S. Panja and A. Sen Gupta, Design of an Ion Trap for Trapping Single 171Yb+, Curr. Sci., 106 (2014) 1348.Google Scholar
  25. [25]
    A. Rastogi, N. Batra, A. Roy, J. Thangjam, V. P. S. Kalsi, S. Panja and S. De, Design of the Ion Trap and Vacuum System for 171Yb-Ion Optical Frequency Standard, MAPAN-J. Metrol. Soc India, 30 (2015) 169.Google Scholar
  26. [26]
    M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano and D. J. Wineland, Ionic Crystals in a Linear Paul Trap, Phys. Rev. A., 45 (1992) 6493.ADSCrossRefGoogle Scholar
  27. [27]
    J. D. Siverns, L. R. Simkins, S. Weidt, and W. K. Hensinger, On the Application of Radio Frequency Voltages to Ion Traps Via Helical Resonators, Appl. Phys. B, 107 (2012) 921-934.ADSCrossRefGoogle Scholar
  28. [28]
    W. W. Macalpine and R. O. Schildknecht, Coaxial. Resonators with Helical Inner Conductor, Proc. IRE 47 (1959) 2099.CrossRefGoogle Scholar
  29. [29]
    T. Nishikawa, S. Tamura, Y. Ishikawa, and H. Matsumoto, Coaxial Resonator, US Patent- US 4398164 A, (1983).Google Scholar
  30. [30]
    A.I. Zverev and H.J. Blinchikoff, Realization of a Filter with Helical Components, IEEE Trans. Component Parts, 8 (1961) 99.CrossRefGoogle Scholar
  31. [31]
    S. Panja, S. De, S. Yadav and A. Sen Gupta, Measuring Capacitance and Inductance of a Helical Resonator and Improving Its Quality Factor by Mutual Inductance Alteration, Rev. Sci. Instrm. 86 (2015) 056104.Google Scholar

Copyright information

© Metrology Society of India 2017

Authors and Affiliations

  • N. Batra
    • 1
    • 2
  • S. Panja
    • 1
    • 2
  • S. De
    • 1
    • 2
  • A. Roy
    • 1
    • 2
  • S. Majhi
    • 1
  • S. Yadav
    • 1
  • A. Sen Gupta
    • 2
    • 3
  1. 1.Time and Frequency Division, CSIR-National Physical LaboratoryDr. K. S. Krishnan MargNew DelhiIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)CSIR- National Physical Laboratory (CSIR-NPL) CampusNew DelhiIndia
  3. 3.The Northcap UniversityGurgaonIndia

Personalised recommendations