, Volume 30, Issue 3, pp 169–174 | Cite as

Design of the Ion Trap and Vacuum System for 171Yb-ion Optical Frequency Standard

  • A. Rastogi
  • N. Batra
  • A. Roy
  • J. Thangjam
  • V. P. S. Kalsi
  • S. Panja
  • S. De
Original Paper


We are developing a frequency standard based on the ultra-narrow electric octupole transition of the ytterbium-ion (171Yb+), which is in the optical wavelength region. In this article, we describe optimized design of our end-cap type Paul trap which will be used for trapping single ions for precision frequency metrology. Selection of the materials for fabricating different parts of the trap assembly is also described. Customized design of the ultra-high vacuum chamber, which houses the ion trap, oven producing ytterbium atomic beam, compensation electrodes and high numerical aperture fluorescence collection lens together with four pairs of optical viewports is lastly described.


Ion trap Ultra-high vacuum Frequency standard Optical clock 



We thank A. Sen Gupta for useful discussions and acknowledge CSIR-CSIO for fabricating the trap assembly using their precision machining facility. S. DE acknowledges CSIR-NPL, SERB-DST (No. SB/S2/LOP/033/2013) and DAE-BRNS (No. 34/14/19/2014-BRNS/0309) for supporting this work.


  1. [1]
    T.P. Heavener, E.A. Donley, F. Levi, G. Costanzo, T.E. Parker, J.H. Shirley, N. Ashby, S. Barlow and S.R. Jefferts, First accuracy evaluation of NIST-F2, Metrologia, 51 (2014) 174–182.CrossRefADSGoogle Scholar
  2. [2]
    K. Szymaniec, S. Lea and K. Liu, An evaluation of the frequency shift caused by collisions with background gas in the primary frequency standard NPL-CsF2, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 (2014) 203–206.CrossRefGoogle Scholar
  3. [3]
    M. Takamoto, F.L. Hong, R. Higashi and H. Katori, An optical lattice clock, Nature, 435 (2005) 323–324.CrossRefADSGoogle Scholar
  4. [4]
    H.G. Dehmelt, Monoion oscillator as potential ultimate laser frequency standard, IEEE Trans. Instrum. Meas., 31 (1982) 83–87.CrossRefADSGoogle Scholar
  5. [5]
    T.L. Nicholson, M.J. Martin, J.R. Williams, B.J. Bloom, M. Bishof, M.D. Swallows, S.L. Campbell and J. Ye, Comparison of two independent Sr optical clocks with 1 × 10−17 stability at 103 s, Phys. Rev. Lett., 109 (2012) 230801.CrossRefADSGoogle Scholar
  6. [6]
    N. Hinkley, J.A. Sherman, N.B. Phillips, M. Schioppo, N.D. Lemke, K. Beloy, M. Pizzocaro, C.W. Oates and A.D. Ludlow, An atomic clock with 10−18 instability, Science, 341 (2013) 1215–1218.CrossRefADSGoogle Scholar
  7. [7]
    T. Rosenband, D.B. Hume, P.O. Schmidt, C.W. Chou, A. Brusch, L. Lorini, W.H. Oskay, R.E. Drullinger, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, W.C. Swann, N.R. Newbury, W.M. Itano, D.J. Wineland and J.C. Bergquist, Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place, Science, 319 (2008) 1808–1812.CrossRefADSGoogle Scholar
  8. [8]
    R.M. Godun, P.B.R. Nisbet-Jones, J.M. Jones, S.A. King, L.A.M. Johnson, H.S. Margolis, K. Szymaniec, S.N. Lea, K. Bongs and P. Gill, Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants, Phys. Rev. Lett., 113 (2014) 210801.CrossRefADSGoogle Scholar
  9. [9]
    N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers and E. Peik, Improved limit on a temporal variation of m p /m e from comparisons of Yb+ and Cs atomic clocks, Phys. Rev. Lett., 113 (2014) 210802.CrossRefADSGoogle Scholar
  10. [10]
    Y.H. Wang, R. Dumke, T. Liu, A. Stejskal, Y.N. Zhao, J. Zhang, Z.H. Lu, L.J. Wang, T. Becker and H. Walther, Absolute frequency measurement and high resolution spectroscopy of 115In+ 5s21S0–5s5p 3P0 narrowline transition, Opt. Commun., 273 (2007) 526–531.CrossRefADSGoogle Scholar
  11. [11]
    G.P. Barwood,G. Huang, H.A. Klein, L.A.M. Johnson, S.A. King, H.S. Margolis, K. Szymaniec and P. Gill, Agreement between two 88Sr+ optical clocks to 4 parts in 1017, Phys. Rev. A, 89 (2014) 050501.CrossRefADSGoogle Scholar
  12. [12]
    Y. Huang, P. Liu, W. Bian, H. Guan, K. Gao, Evaluation of the systematic shifts and absolute frequency measurement of a single Ca+ ion frequency standard, Appl. Phys. B, 114 (2014) 189–201.CrossRefADSGoogle Scholar
  13. [13]
    C.W. Chou, D.B. Hume, J.C.J. Koelemeij, D.J. Wineland and T. Rosenband, Frequency comparison of two high-accuracy Al+ optical clocks, Phys. Rev. Lett., 104 (2010) 070802.CrossRefADSGoogle Scholar
  14. [14]
    M.G. Raizen, J.M. Gilligan, J.C. Bergquist, W.M. Itano and D.J. Wineland, Ionic crystals in a linear Paul trap, Phys. Rev. A, 45 (1992) 6493.CrossRefADSGoogle Scholar
  15. [15]
    W. Paul and M. Raether, Das elektrische massenfilter, Z. Phys. 140 (1955) 262–273.CrossRefADSGoogle Scholar
  16. [16]
    W. Neuhauser, M. Hohenstatt, P. Toschek and H. Dehmelt, Optical-sideband cooling of visible atom cloud confined in parabolic well, Phys. Rev. Lett., 41 (1978) 233236.CrossRefGoogle Scholar
  17. [17]
    C.A. Schrama, E. Peik, W.W. Smith and H. Walther, Novel miniature ion traps, Opt. Commun., 101 (1993) 32–36.CrossRefADSGoogle Scholar
  18. [18]
    D.J. Berkeland, J.D. Miller, J.C. Bergquist, W.M. Itano and D.J. Wineland, Laser-cooled mercury ion frequency standard, Phys. Rev. Lett., 80 (1998) 2089–2092.CrossRefADSGoogle Scholar
  19. [19]
    P. Taylor, M. Roberts, S.V. Gateva-Kostova, R.B.M. Clarke, G.P. Barwood, W.R.C. Rowley and P. Gill, Investigation of the 2S1/2 − 2D5/2 clock transition in a single ytterbium ion, Phys. Rev. A, 56 (1997) 2699–2704.CrossRefADSGoogle Scholar
  20. [20]
    W.H. Oskay, W.M. Itano and J.C. Bergquist, Measurement of the 199Hg+ 5d96 s2 2D5/2 electric quadrupole moment and a constraint on the quadrupole shift, Phys. Rev. Lett. 94 (2005) 163001.CrossRefADSGoogle Scholar
  21. [21]
    B. Stein, Contributions to a Yb+ single ion optical frequency standards, PhD thesis, University of Hannover (2010).Google Scholar
  22. [22]
    S.A. King, R.M. Godun, S.A. Webster, H.S. Margolis, L.A.M. Johnson, K. Szymaniec, P.E.G. Baird and P. Gill, Absolute frequency measurement of the 2S1/22F7/2 electric octupole transition in a single ion of 171Yb+ with 10−15 fractional uncertainty, New J. Phys., 14 (2012) 013045.CrossRefADSGoogle Scholar
  23. [23]
    A.G. Sinclair, M.A. Wilson and P. Gill, Improved three-dimensional control of a single strontium ion in an endcap trap, Opt. Commun., 190 (2001) 193–203.CrossRefADSGoogle Scholar
  24. [24]
    P. Dube, A.A. Madej, Z. Zhou and J.E. Bernard, Evaluation of systematic shifts of the 88Sr+ single-ion optical frequency standard at the 10−17 level, Phys. Rev. A, 87 (2013) 023806.CrossRefADSGoogle Scholar
  25. [25]
    S. De, N. Batra, S. Chakraborty, S. Panja and A. Sen Gupta, Design of an ion trap for trapping single 171Yb+, Curr. Sci., 106 (2014) 1348–1352.Google Scholar
  26. [26]
    N. Batra, S. De, A. Sen Gupta, S. Singh, A. Arora and B. Arora, Systematic shifts for ytterbium-ion optical frequency standards, Manuscript is communicated to SCI journal (2014).
  27. [27]
    N. Batra, S. De, A. Rastogi, S. Panja and A. Sen Gupta, Effects of a nearly ideal quadrupole ion trap for optical frequency standards. In: Proceeding of CDAMOP 2015 conference in the international journal-journal of atomic, molecular, condensate and nano physics. Manuscript is communicated (2015).Google Scholar
  28. [28]
    C. Liu, D. Ryding, R.W. Nielsen, T.L. Kruy and T.M. Kuzay, Cleaning and outgassing studies of machinable tungsten for beamline safety shutters, Rev. Sci. Instrum., 67 (1996) 3378.ADSGoogle Scholar
  29. [29]
    D.A. Hite, Y. Colombe, A.C. Wilson, D.T.C. Allcock, D. Leibfried, D.J. Wineland and D.P. Pappas, Surface science for improved ion traps, MRS Bull., 38 (2013) 826–833.CrossRefGoogle Scholar
  30. [30]
    K. Pant, P. Arora, S. Yadav and A. Sen Gupta, Generation of quadrupole magnetic field for trapping atoms in Cs fountain being developed at NPL India. MAPAN-J. Metrol. Soc India, 26 (2011) 285–294.zbMATHGoogle Scholar
  31. [31]
    A. Agarwal and A. Sen Gupta, Frequency and intensity control of lasers to cool and control caesium atoms. MAPAN-J. Metrol. Soc India, 27 (2012) 169–173.Google Scholar
  32. [32]
    P. Arora, S.B. Purnapatra, A. Acharya, R. Kumar and A. Sen Gupta, Measurement of temperature of atomic cloud using time-of-flight technique. MAPAN-J. Metrol. Soc India, 27 (2012) 31–39.Google Scholar
  33. [33]
    P. Arora, S.B. Purnapatra, A. Acharya, A. Agarwal, S. Yadav, K. Pant and A. Sen Gupta, NPLI cesium atomic fountain frequency standard: preliminary results, IEEE Trans. Instrum. Meas., 62 (2013) 2037–2042.CrossRefGoogle Scholar

Copyright information

© Metrology Society of India 2015

Authors and Affiliations

  • A. Rastogi
    • 1
    • 2
  • N. Batra
    • 1
    • 2
  • A. Roy
    • 1
  • J. Thangjam
    • 1
    • 2
  • V. P. S. Kalsi
    • 3
  • S. Panja
    • 1
  • S. De
    • 1
  1. 1.CSIR-National Physical LaboratoryNew DelhiIndia
  2. 2.Academy of Scientific and Industrial ResearchChennaiIndia
  3. 3.CSIR-Central Scientific Instruments OrganizationChandigarhIndia

Personalised recommendations