Advertisement

MAPAN

, Volume 30, Issue 1, pp 1–5 | Cite as

Redefine the Kilogram in Terms of the Carbon-12 Atom and an Exact Value of the Avogadro Constant

  • Ping Zhan Si
Original Paper

Abstract

We report on a method for redefinition of the kilogram by 12C, which ideally joins the atomic and the macroscopic mass units in a natural way. The kilogram artifact will be composed of a number of concentric shells around C-60 and that this is sometimes referred to as a “carbon onion”. A 135887620-layer carbon onion containing 50184508751575328771368200 atoms of 12C falls in the acceptable range for the redefinition of kilogram and is closest to the recent experimental results. An Avogadro constant is thus derived to be 602214105018903945256418.4. A perfect carbon onion is ideal for kilogram redefinition and determination of the Avogadro constant because it is expected to exhibit characteristics of central symmetry, high stability, high strength, high sphericity, low roughness, weak inter-planar force and strong in-plane bonding, easy atomic counting, and these are important for technical feasibility in further experiments.

Keywords

Redefinition of kilogram Avogadro constant Carbon onion 

Notes

Acknowledgments

The author is grateful for the support from the National Natural Science Foundation of China (Nos. 10874159, 11074227).

References

  1. [1]
    P. Becker, The new kilogram definition based on counting the atoms in a 28Si crystal, Contemp. Phys., 53 (2012) 461–479.CrossRefADSGoogle Scholar
  2. [2]
    B. Andreas, Y. Azuma, G. Bartl, P. Becker, H. Bettin, M. Borys, et al., Determination of the Avogadro constant by counting the atoms in a 28Si crystal, Phys. Rev. Lett. 106 (2011) 030801.CrossRefADSGoogle Scholar
  3. [3]
    A. J. Leistner, W. J. Giardini, Fabrication and sphericity measurements of single-crystal silicon spheres, Metrologia 31 (1994) 231–243.CrossRefADSGoogle Scholar
  4. [4]
    I. Busch, Y. Azuma, H. Bettin, et al., Surface layer determination for the Si spheres of the Avogadro project, Metrologia, 48 (2011) S62–82.CrossRefADSGoogle Scholar
  5. [5]
    I. Busch, H. U. Danzebrink, M. Krumrey, M. Borys, and H. Bettin, Oxide layer mass determination at the silicon sphere of the Avogadro project, IEEE Tran. Instrum. Meas., 58 (2009) 891–896.CrossRefGoogle Scholar
  6. [6]
    A. Picard, P. Barat, M. Borys, M. Firlus, and S. Mizushima, State-of-the-art mass determination of 28Si spheres for the Avogadro project, Metrologia, 48 (2011) S112–119.CrossRefADSGoogle Scholar
  7. [7]
    L. Yang, Z. Mester, R. E. Sturgeon, J. Meija, Determination of the atomic weight of 28Si-enriched silicon for a revised estimate of the Avogadro constant, Anal. Chem., 84 (2012) 2321–2327.CrossRefGoogle Scholar
  8. [8]
    “Resolutions Adopted by the 24th Meeting of the General Conference on Weights and Measures (CGPM)” Paris: BIPM. 17–21 Oct, (2011) (http://www.bipm.org/utils/common/pdf/24_CGPM_Resolutions.pdf).
  9. [9]
    P. J. Mohr, B. N. Taylor, D. B. Newell, CODATA recommended values of the fundamental physical constants: 2010, Rev. Mod. Phys. 84 (2012)1527–1605.Google Scholar
  10. [10]
    R. F. Fox, T.P. Hill, An exact value for Avogadro’s number, Am. Sci., 95 (2007) 104–107.CrossRefGoogle Scholar
  11. [11]
    D. Ugarte, Curling and closure of graphitic networks under electron-beam irradiation, Nature, 359 (1992) 707–709.CrossRefADSGoogle Scholar
  12. [12]
    H. W. Kroto, Carbon onions introduce new flavour to fullerene studies, Nature, 359 (1992) 670–671.CrossRefADSGoogle Scholar
  13. [13]
    P. Z. Si, M. Zhang, Z. D. Zhang, X. G. Zhao, X. L. Ma, D. Y. Geng, Synthesis and structure of multi-layered WS2(CoS), MOS2(Mo) nanocapsules and single-layered WS2(W) nanoparticles, J. Mater. Sci., 40 (2005) 4287–4291.CrossRefADSGoogle Scholar
  14. [14]
    P. Becker, D. Schiel, The Avogadro constant and a new definition of the kilogram, Int. J. Mass. Spectrom., 349–350 (2013) 219–226.CrossRefGoogle Scholar
  15. [15]
    C. G. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321 (2008) 385–388.CrossRefADSGoogle Scholar
  16. [16]
    K. Takeshita, M. Ishida, Optimum design of multi-stage isotope separation process by exergy analysis, Energy, 31 (2006) 3097–3107.CrossRefGoogle Scholar
  17. [17]
    A. Maiti, C. J. Brabec, J. Bernholc, Structure and energetics of single and multilayer fullerene cages, Phys. Rev. Lett., 70 (1993) 3023–3026.CrossRefADSGoogle Scholar

Copyright information

© Metrology Society of India 2014

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringChina Jiliang UniversityHangzhouChina

Personalised recommendations