Skip to main content

Advertisement

Log in

Corticosterone Induced the Increase of proBDNF in Primary Hippocampal Neurons Via Endoplasmic Reticulum Stress

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Major depression disorder is one of the most common psychiatric disorders that greatly threaten the mental health of a large population worldwide. Previous studies have shown that endoplasmic reticulum (ER) stress plays an important role in the pathophysiology of depression, and current research suggests that brain-derived neurotrophic factor precursor (proBDNF) is involved in the development of depression. However, the relationship between ER and proBDNF in the pathophysiology of depression is not well elucidated. Here, we treated primary hippocampal neurons of mice with corticosterone (CORT) and evaluated the relationship between proBDNF and ERS. Our results showed that CORT induced ERS and upregulated the expression of proBDNF and its receptor, Follistatin-like protein 4 (FSTL4), which contributed to significantly decreased neuronal viability and expression of synaptic-related proteins including NR2A, PSD95, and SYN. Anti-proBDNF neutralization and ISRIB (an inhibitor of the ERS) treatment, respectively, protected neuronal viabilities and increased the expression of synaptic-related proteins in corticosterone-exposed neurons. ISRIB treatment reduced the expression of proBDNF and FSTL4, whereas anti-proBDNF treatment did not affect ERS markers (Grp78, p-PERK, ATF4) expression. Our study presented evidence that CORT-induced ERS negatively regulated the neuronal viability and the level of synaptic-related protein of primary neurons via the proBDNF/FSTL4 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

There is no additional data, software, database, or application/tool available apart from that reported in the present study. All data is provided in the manuscript.

References

  • Bai YY, Ruan CS, Yang CR, Li JY, Kang Z et al (2016) ProBDNF signaling regulates depression-like behaviors in rodents under chronic stress. Neuropsychopharmacology 41:2882–2892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beluche I, Chaudieu I, Norton J, Carriere I, Boulenger JP et al (2009) Persistence of abnormal cortisol levels in elderly persons after recovery from major depression. J Psychiatr Res 43:777–783

    PubMed  Google Scholar 

  • Chen S, Liang T, Zhou FH, Cao Y, Wang C et al (2019) Regular music exposure in juvenile rats facilitates conditioned fear extinction and reduces anxiety after foot shock in adulthood. Biomed Res Int 2019:8740674

    PubMed  PubMed Central  Google Scholar 

  • Cowansage KK, LeDoux JE, Monfils MH (2010) Brain-derived neurotrophic factor: a dynamic gatekeeper of neural plasticity. Curr Mol Pharmacol 3:12–29

    CAS  PubMed  Google Scholar 

  • De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19:269–301

    PubMed  Google Scholar 

  • Donoso F, Ramirez VT, Golubeva AV, Moloney GM, Stanton C et al (2019) Naturally derived polyphenols protect against corticosterone-induced changes in primary cortical neurons. Int J Neuropsychopharmacol 22:765–777

    PubMed  PubMed Central  Google Scholar 

  • Drevets WC (2000) Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog Brain Res 126:413–431

    CAS  PubMed  Google Scholar 

  • Duman RS (2004) Neural plasticity: consequences of stress and actions of antidepressant treatment. Dialogues Clin Neurosci 6:157–169

    PubMed  PubMed Central  Google Scholar 

  • Duman RS, Aghajanian GK, Sanacora G, Krystal JH (2016) Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med 22:238–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127

    CAS  PubMed  Google Scholar 

  • Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B (2009) Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuro-Psychopharmacol Biol Psychiatry 33:70–75

    CAS  Google Scholar 

  • Furuse K, Ukai W, Hashimoto E, Hashiguchi H, Kigawa Y, Ishii T, Tayama M, Deriha K, Shiraishi M, Kawanishi C (2019) Antidepressant activities of escitalopram and blonanserin on prenatal and adolescent combined stress-induced depression model: possible role of neurotrophic mechanism change in serum and nucleus accumbens. J Affect Disord 247:97–104

    CAS  PubMed  Google Scholar 

  • Geng ZH, Cheng YY, Ma XL, Li ST (2003) Effect of zinc on the corticosterone-induced injury of primary cultured rat hippocampal neurons. Sheng Li Xue Bao 55:736–741

    CAS  PubMed  Google Scholar 

  • Gong MJ, Han B, Wang SM, Liang SW, Zou ZJ (2016) Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats. J Pharm Biomed Anal 123:63–73

    CAS  PubMed  Google Scholar 

  • Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, Scheimann J, Myers B (2016) Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol 6:603–621

    PubMed  PubMed Central  Google Scholar 

  • Hiester BG, Galati DF, Salinas PC, Jones KR (2013) Neurotrophin and Wnt signaling cooperatively regulate dendritic spine formation. Mol Cell Neurosci 56:115–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642

    CAS  PubMed  Google Scholar 

  • Jacobson L, Sapolsky R (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr Rev 12:118–134

    CAS  PubMed  Google Scholar 

  • Jiang Y, Li Z, Liu Y, Liu X, Chang Q, Liao Y, Pan R (2015) Neuroprotective effect of water extract of Panax ginseng on corticosterone-induced apoptosis in PC12 cells and its underlying molecule mechanisms. J Ethnopharmacol 159:102–112

    CAS  PubMed  Google Scholar 

  • Joels M, Karst H, Sarabdjitsingh RA (2018) The stressed brain of humans and rodents. Acta Physiol (Oxf) 223:e13066

    CAS  Google Scholar 

  • Keller J, Gomez R, Williams G, Lembke A, Lazzeroni L, Murphy GM Jr, Schatzberg AF (2017) HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry 22:527–536

    CAS  PubMed  Google Scholar 

  • Kessing LV, Willer IS, Knorr U (2011) Volume of the adrenal and pituitary glands in depression. Psychoneuroendocrinology 36:19–27

    PubMed  Google Scholar 

  • Kim S, Joe Y, Jeong SO, Zheng M, Back SH, Park SW, Ryter SW, Chung HT (2014) Endoplasmic reticulum stress is sufficient for the induction of IL-1beta production via activation of the NF-kappaB and inflammasome pathways. Innate Immun 20:799–815

    PubMed  Google Scholar 

  • Latt HM, Matsushita H, Morino M, Koga Y, Michiue H, Nishiki T, Tomizawa K, Matsui H (2018) Oxytocin inhibits corticosterone-induced apoptosis in primary hippocampal neurons. Neuroscience 379:383–389

    CAS  PubMed  Google Scholar 

  • Lee AL, Ogle WO, Sapolsky RM (2002) Stress and depression: possible links to neuron death in the hippocampus. Bipolar Disord 4:117–128

    CAS  PubMed  Google Scholar 

  • Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948

    CAS  PubMed  Google Scholar 

  • Li J, Chen J, Ma N, Yan D, Wang Y, Zhao X, Zhang Y, Zhang C (2019) Effects of corticosterone on the expression of mature brain-derived neurotrophic factor (mBDNF) and proBDNF in the hippocampal dentate gyrus. Behav Brain Res 365:150–156

    CAS  PubMed  Google Scholar 

  • Li J, Xie X, Li Y, Liu X, Liao X et al (2017) Differential behavioral and neurobiological effects of chronic corticosterone treatment in adolescent and adult rats. Front Mol Neurosci 10:25

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Shen S, Li Z, Jiang Y, Si J, Chang Q, Liu X, Pan R (2014) Cajaninstilbene acid protects corticosterone-induced injury in PC12 cells by inhibiting oxidative and endoplasmic reticulum stress-mediated apoptosis. Neurochem Int 78:43–52

    CAS  PubMed  Google Scholar 

  • Liu YM, Hu CY, Shen JD, Wu SH, Li YC, Yi LT (2017) Elevation of synaptic protein is associated with the antidepressant-like effects of ferulic acid in a chronic model of depression. Physiol Behav 169:184–188

    CAS  PubMed  Google Scholar 

  • Luo C, Zhong XL, Zhou FH, Li JY, Zhou P, Xu JM, Song B, Li CQ, Zhou XF, Dai RP (2016) Peripheral brain derived neurotrophic factor precursor regulates pain as an inflammatory mediator. Sci Rep 6:27171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahar I, Bambico FR, Mechawar N, Nobrega JN (2014) Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci Biobehav Rev 38:173–192

    CAS  PubMed  Google Scholar 

  • Malhi GS, Mann JJ (2018) Depression. Lancet 392:2299–2312

    PubMed  Google Scholar 

  • McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87:873–904

    PubMed  Google Scholar 

  • McKinnon MC, Yucel K, Nazarov A, MacQueen GM (2009) A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. J Psychiatry Neurosci 34:41–54

    PubMed  PubMed Central  Google Scholar 

  • Meller WH, Kathol RG, Samuelson SD, Gehris TL, Carroll BT, Pitts AF, Clayton PJ (1995) CRH challenge test in anxious depression. Biol Psychiatry 37:376–382

    CAS  PubMed  Google Scholar 

  • Murphy BE (1991) Steroids and depression. J Steroid Biochem Mol Biol 38:537–559

    CAS  PubMed  Google Scholar 

  • Nakatani Y, Tsuji M, Amano T, Miyagawa K, Miyagishi H, Saito A, Imai T, Takeda K, Ishii D, Takeda H (2014) Neuroprotective effect of yokukansan against cytotoxicity induced by corticosterone on mouse hippocampal neurons. Phytomedicine 21:1458–1465

    PubMed  Google Scholar 

  • Ngoupaye GT, Yassi FB, Bahane DAN, Bum EN (2018) Combined corticosterone treatment and chronic restraint stress lead to depression associated with early cognitive deficits in mice. Metab Brain Dis 33:421–431

    CAS  PubMed  Google Scholar 

  • Nitta A, Zheng WH, Quirion R (2004) Insulin-like growth factor 1 prevents neuronal cell death induced by corticosterone through activation of the PI3k/Akt pathway. J Neurosci Res 76:98–103

    CAS  PubMed  Google Scholar 

  • Oakes SA, Papa FR (2015) The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol 10:173–194

    CAS  PubMed  Google Scholar 

  • Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen S, Teng KK, Yung WH, Hempstead BL, Lu B (2004) Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306:487–491

    CAS  PubMed  Google Scholar 

  • Pavitt GD, Ron D (2012) New insights into translational regulation in the endoplasmic reticulum unfolded protein response. Cold Spring Harb Perspect Biol 4

  • Peng R, Dai W, Li Y (2018) Neuroprotective effect of a physiological ratio of testosterone and estradiol on corticosterone-induced apoptosis in PC12 cells via Traf6/TAK1 pathway. Toxicol in Vitro 50:257–263

    CAS  PubMed  Google Scholar 

  • Rao ML, Vartzopoulos D, Fels K (1989) Thyroid function in anxious and depressed patients. Pharmacopsychiatry 22:66–70

    CAS  PubMed  Google Scholar 

  • Robinson SA, Brookshire BR, Lucki I (2016) Corticosterone exposure augments sensitivity to the behavioral and neuroplastic effects of fluoxetine in C57BL/6 mice. Neurobiol Stress 3:34–42

    PubMed  PubMed Central  Google Scholar 

  • Roozendaal B, McEwen BS, Chattarji S (2009) Stress, memory and the amygdala. Nat Rev Neurosci 10:423–433

    CAS  PubMed  Google Scholar 

  • Sharma D, Barhwal KK, Biswal SN, Srivastava AK, Bhardwaj P, Kumar A, Chaurasia OP, Hota SK (2019) Hypoxia-mediated alteration in cholesterol oxidation and raft dynamics regulates BDNF signalling and neurodegeneration in hippocampus. J Neurochem 148:238–251

    CAS  PubMed  Google Scholar 

  • Shen LL, Mañucat-Tan NB, Gao SH, Li WW, Zeng F, Zhu C, Wang J, Bu XL, Liu YH, Gao CY, Xu ZQ, Bobrovskaya L, Lei P, Yu JT, Song W, Zhou HD, Yao XQ, Zhou XF, Wang YJ (2018) The ProNGF/p75NTR pathway induces tau pathology and is a therapeutic target for FTLD-tau. Mol Psychiatry 23:1813–1824

    CAS  PubMed  Google Scholar 

  • Sidrauski C, Acosta-Alvear D, Khoutorsky A, Vedantham P, Hearn BR, Li H, Gamache K, Gallagher CM, Ang KKH, Wilson C, Okreglak V, Ashkenazi A, Hann B, Nader K, Arkin MR, Renslo AR, Sonenberg N, Walter P (2013) Pharmacological brake-release of mRNA translation enhances cognitive memory. Elife 2:e00498

    PubMed  PubMed Central  Google Scholar 

  • Smith K (2014) Mental health: a world of depression. Nature 515:181

    PubMed  Google Scholar 

  • Sterner EY, Kalynchuk LE (2010) Behavioral and neurobiological consequences of prolonged glucocorticoid exposure in rats: relevance to depression. Prog Neuro-Psychopharmacol Biol Psychiatry 34:777–790

    CAS  Google Scholar 

  • Sun C, Liu N, Li H, Zhang M, Liu S et al (2004) Experimental study of effect of corticosterone on primary cultured hippocampal neurons and their Ca2+/CaMKII expression. J Huazhong Univ Sci Technolog Med Sci 24:543–546

    CAS  PubMed  Google Scholar 

  • Sun Y, Lim Y, Li F, Liu S, Lu JJ, Haberberger R, Zhong JH, Zhou XF (2012) ProBDNF collapses neurite outgrowth of primary neurons by activating. RhoA PLoS One 7:e35883

    CAS  PubMed  Google Scholar 

  • Suzuki R, Fujikawa A, Komatsu Y, Kuboyama K, Tanga N, Noda M (2018) Enhanced extinction of aversive memories in mice lacking SPARC-related protein containing immunoglobulin domains 1 (SPIG1/FSTL4). Neurobiol Learn Mem 152:61–70

    CAS  PubMed  Google Scholar 

  • Tafet GE, Nemeroff CB (2016) The links between stress and depression: psychoneuroendocrinological, genetic, and environmental interactions. J Neuropsychiatry Clin Neurosci 28:77–88

    PubMed  Google Scholar 

  • Teng HK, Teng KK, Lee R, Wright S, Tevar S et al (2005) ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 25:5455–5463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tennant C (2002) Life events, stress and depression: a review of recent findings. Aust N Z J Psychiatry 36:173–182

    PubMed  Google Scholar 

  • Tu BX, Wang LF, Zhong XL, Hu ZL, Cao WY, Cui YH, Li SJ, Zou GJ, Liu Y, Zhou SF, Zhang WJ, Su JZ, Yan XX, Li F, Li CQ (2019) Acute restraint stress alters food-foraging behavior in rats: taking the easier way while suffered. Brain Res Bull 149:184–193

    PubMed  Google Scholar 

  • Willner P, Scheel-Kruger J, Belzung C (2013) The neurobiology of depression and antidepressant action. Neurosci Biobehav Rev 37:2331–2371

    CAS  PubMed  Google Scholar 

  • Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA, Hempstead BL, Lu B (2005) Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8:1069–1077

    CAS  PubMed  Google Scholar 

  • Yang B, Ren Q, Zhang JC, Chen QX, Hashimoto K (2017) Altered expression of BDNF, BDNF pro-peptide and their precursor proBDNF in brain and liver tissues from psychiatric disorders: rethinking the brain-liver axis. Transl Psychiatry 7:e1128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang B, Yang C, Ren Q, Zhang JC, Chen QX, Shirayama Y, Hashimoto K (2016) Regional differences in the expression of brain-derived neurotrophic factor (BDNF) pro-peptide, proBDNF and preproBDNF in the brain confer stress resilience. Eur Arch Psychiatry Clin Neurosci 266:765–769

    PubMed  Google Scholar 

  • Zhang WJ, Cao WY, Huang YQ, Cui YH, Tu BX, Wang LF, Zou GJ, Liu Y, Hu ZL, Hu R, Li CQ, Xing XW, Li F (2019) The role of miR-150 in stress-induced anxiety-like behavior in mice. Neurotox Res 35:160–172

    PubMed  Google Scholar 

  • Zhao G, Zhang C, Chen J, Su Y, Zhou R et al (2017) Ratio of mBDNF to proBDNF for differential diagnosis of major depressive disorder and bipolar depression. Mol Neurobiol 54:5573–5582

    CAS  PubMed  Google Scholar 

  • Zheng J, Yin F, Jin G, Zhang X, Zhang L et al (2018) In vitro neuroprotection of rat hippocampal neurons by manninotriose and astragaloside IV against corticosterone-induced toxicity. Molecules 23

  • Zhong F, Liu L, Wei JL, Hu ZL, Li L et al (2018) Brain-derived neurotrophic factor precursor in the hippocampus regulates both depressive and anxiety-like behaviors in rats. Front Psychiatry 9:776

    PubMed  Google Scholar 

  • Zhou B, Tan J, Zhang C, Wu Y (2018) Neuroprotective effect of polysaccharides from Gastrodia elata blume against corticosterone-induced apoptosis in PC12 cells via inhibition of the endoplasmic reticulum stress-mediated pathway. Mol Med Rep 17:1182–1190

    CAS  PubMed  Google Scholar 

  • Zhou L, Xiong J, Lim Y, Ruan Y, Huang C, Zhu Y, Zhong JH, Xiao Z, Zhou XF (2013) Upregulation of blood proBDNF and its receptors in major depression. J Affect Disord 150:776–784

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Shanghai Yile Biotechnology Corp. for providing the monoclonal anti-proBDNF antibody.

Funding

This research was supported by the National Natural Science Foundation of China (31371212 to Chang-Qi Li; 81760238 and 81571256 to Fang-Fang Bi; 81771354 and 81471106 to Ru-Ping Dai; 81471372 to Fang Li; 81901231 to Zhao-Lan Hu) and by the Natural Science Foundation of Hunan Province, China (2018JJ3635 to Fang Li; 2019JJ40369 to Chang-Qi Li), and Graduate Research and Innovation Projects of Central South University, Changsha, Hunan, China (506021710 to Yu Liu; 506021717 to Guangjing Zou).

Author information

Authors and Affiliations

Authors

Contributions

LY and ZGJ contributed to the cellular and molecular experiments, and helped write the manuscript. TBX contributed to the cellular experiments and the molecular experiments and editing of the manuscript. HZL and Luo C contributed to cellular experiments. CYH and XY contributed to the molecular experiments. LF and DRP contributed to data analysis. BFF and LCQ contributed to experimental design, data analysis, figure construction, and manuscript writing. All authors read and agreed to the final version of the manuscript.

Corresponding authors

Correspondence to Fang-Fang Bi or Chang-Qi Li.

Ethics declarations

All animal experiments were approved by the Animal Care and Use Committee of Central South University in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals (no. 2019-s08).

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zou, GJ., Tu, BX. et al. Corticosterone Induced the Increase of proBDNF in Primary Hippocampal Neurons Via Endoplasmic Reticulum Stress. Neurotox Res 38, 370–384 (2020). https://doi.org/10.1007/s12640-020-00201-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-020-00201-4

Keywords

Navigation