Advertisement

Protective Role of Epigallocatechin Gallate in a Rat Model of Cisplatin-Induced Cerebral Inflammation and Oxidative Damage: Impact of Modulating NF-κB and Nrf2

  • Manar Hamed Arafa
  • Hebatallah Husseini AtteiaEmail author
Original Article
  • 112 Downloads

Abstract

Cisplatin is a widely used chemotherapeutic agent in treating various types of cancers. However, it can induce neurotoxicity and nephrotoxicity, limiting its dose and clinical use. Although previous studies indicated the direct link between cisplatin-induced central neurotoxicity and oxidative stress, the exact mechanism is not completely understood. Therefore, herein we investigated the effects of prophylactic and concurrent treatment with (−)-epigallocatechin-3-gallate (EGCG), a natural polyphenolic neuroprotective antioxidant, on cisplatin-induced brain toxicity in rats to delineate its molecular mechanism of action. We found that cisplatin initiated a cascade of genetic, biological, and histopathological changes in the brain cortex, inducing inflammatory cytokines, appearance of scattered inflammatory cells, nitro-oxidative stress, and apoptotic proteins in the cerebral cortex. However, EGCG not only protected against cisplatin-induced inflammatory burden but also ameliorated the induction of nitro-oxidative stress and apoptotic proteins triggered by cisplatin in the cerebral cortex of pre- and co-treated rats with respect to their unprotected counterparts. EGCG anti-inflammatory effect here may be attributed to the downregulation of nuclear factor kappa B (NF-κB). Additionally, this natural polyphenol significantly ameliorated cisplatin-elicited reduction in cerebral cortex brain-derived neurotrophic factor and acetylcholine esterase. Upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream heme oxygenase-1 (HO-1) by EGCG prophylactic and concurrent administration here seems also to play a key role in the protective impact of EGCG against cisplatin toxicity through enhancing total antioxidant capacity. Thus, EGCG can be used as a promising prophylactic adjuvant for preventing the development of brain inflammation and oxidative damage associated with cisplatin chemotherapy.

Keywords

Acetylcholine esterase Apoptosis Brain-derived neurotrophic factor (BDNF) Cisplatin (−)-Epigallocatechin-3-gallate Oxidative damage Proinflammatory cytokines 

Notes

Compliance with Ethical Standards

All animal manipulations and treatments were conducted precisely in conformation with the National Institutes of Health (NIH) Recommendations for the Care and Use of Laboratory Animals.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Abdel Moneim AE (2014) Azadirachta indica attenuates cisplatin-induced neurotoxicity in rats. Indian J Pharmacol 46:316–321.  https://doi.org/10.4103/0253-7613.132182 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agrawal R, Mishra B, Tyagi E, Nath C, Shukla R (2010) Effect of curcumin on brain insulin receptors and memory functions in STZ (ICV) induced dementia model of rat. Pharmacol Res 61:247–252.  https://doi.org/10.1016/j.phrs.2009.12.008 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ahmed SM, Luo L, Namani A, Wang XJ, Tang X (2017) Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta Mol basis Dis 1863:585–597.  https://doi.org/10.1016/j.bbadis.2016.11.005 CrossRefPubMedGoogle Scholar
  4. Aljafari AA (1995) Kinetics for the inhibition of acetylcholinesterase from human erythrocyte by cisplatin. Int J Biochem Cell Biol 27:965–970.  https://doi.org/10.1016/1357-2725(95)00044-P CrossRefPubMedGoogle Scholar
  5. al Jafari AA, Kamal MA, Duhaiman AS (1995) The mode of inhibition of human erythrocyte membrane-bound acetylcholinesterase by cisplatin in vitro. J Enzym Inhib 8:281–289.  https://doi.org/10.3109/14756369509020135 CrossRefGoogle Scholar
  6. Almutairi MM, Alanazi WA, Alshammari MA, Alotaibi MR, Alhoshani AR, al-Rejaie SS, Hafez MM, al-Shabanah OA (2017) Neuro-protective effect of rutin against cisplatin-induced neurotoxic rat model. BMC Complement Altern Med 17:472.  https://doi.org/10.1186/s12906-017-1976-9 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Apak R, Güçlü K, Ozyürek M, Karademir SE, Altun M (2005) Total antioxidant capacity assay of human serum using copper(II)-neocuproine as chromogenic oxidant: the CUPRAC method. Free Radic Res 39:949–961.  https://doi.org/10.1080/10715760500210145 CrossRefPubMedGoogle Scholar
  8. Areti A, Yerra VG, Naidu V, Kumar A (2014) Oxidative stress and nerve damage: role in chemotherapy induced peripheral neuropathy. Redox Biol 2:289–295.  https://doi.org/10.1016/j.redox.2014.01.006 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Avan A, Postma TJ, Ceresa C, Avan A, Cavaletti G, Giovannetti E, Peters GJ (2015) Platinum-induced neurotoxicity and preventive strategies: past, present, and future. Oncologist 20:411–432.  https://doi.org/10.1634/theoncologist.2014-0044 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Aydin D, Peker EG, Karakurt MD et al (2016) Effects of Ginkgo biloba extract on brain oxidative condition after cisplatin exposure. Clin Invest Med 39:27511PubMedGoogle Scholar
  11. Baig MH, Rizvi SM, Shakil S, Kamal MA, Khan S (2014) A neuroinformatics study describing molecular interaction of cisplatin with acetylcholinesterase: a plausible cause for anticancer drug induced neurotoxicity. CNS Neurol Disord Drug Targets 13:265–270.  https://doi.org/10.2174/18715273113126660143 CrossRefPubMedGoogle Scholar
  12. Baluchnejadmojarad T, Roghani M (2011) Chronic epigallocatechin-3-gallate ameliorates learning and memory deficits in diabetic rats via modulation of nitric oxide and oxidative stress. Behav Brain Res 224:305–310.  https://doi.org/10.1016/j.bbr.2011.06.007 CrossRefPubMedGoogle Scholar
  13. Baluchnejadmojarad T, Roghani M (2012) Chronic oral epigallocatechin-gallate alleviates streptozotocin-induced diabetic neuropathic hyperalgesia in rat: involvement of oxidative stress. Iran. J. Pharm. Res 11:1243–1253PubMedPubMedCentralGoogle Scholar
  14. Bekinschtein P, Cammarota M, Izquierdo I, Medina JH (2008) BDNF and memory formation and storage. Neuroscientist 14:147–156.  https://doi.org/10.1177/1073858407305850 CrossRefPubMedGoogle Scholar
  15. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69.  https://doi.org/10.1038/nrn2038 CrossRefPubMedGoogle Scholar
  16. Cascinu S, Catalano V, Cordella L, Labianca R, Giordani P, Baldelli AM, Beretta GD, Ubiali E, Catalano G (2002) Neuroprotective effect of reduced glutathione on oxaliplatin-based chemotherapy in advanced colorectal cancer: a randomized, double-blind, placebo-controlled trial. J Clin Oncol 20:3478–3483.  https://doi.org/10.1200/JCO.2002.07.061 CrossRefPubMedGoogle Scholar
  17. Cassidy J, Bjarnason GA, Hickish T et al (2006) Randomized double blind (DB) placebo (Plcb) controlled phase III study assessing the efficacy of xaliproden (X) in reducing the cumulative peripheral sensory neuropathy (PSN) induced by the oxaliplatin (Ox) and 5-FU/LV combination (FOLFOX4) in first-line treatment of patients (pts) with metastatic colorectal cancer (MCRC). J Clin Oncol 24:3507.  https://doi.org/10.1200/jco.2006.24.18_suppl.3507 CrossRefGoogle Scholar
  18. Chandravanshi LP, Yadav RS, Shukla RK, Singh A, Sultana S, Pant AB, Parmar D, Khanna VK (2014) Reversibility of changes in brain cholinergic receptors and acetylcholinesterase activity in rats following early life arsenic exposure. Int J Dev Neurosci 34:60–75.  https://doi.org/10.1016/j.ijdevneu.2014.01.007 CrossRefPubMedGoogle Scholar
  19. Chen Y, Li M, Li B, Wang W, Lin A, Sheng M (2013) Effect of reactive oxygen species generation in rabbit corneal epithelial cells on inflammatory and apoptotic signaling pathways in the presence of high osmotic pressure. PLoS One 8:e72900.  https://doi.org/10.1371/journal.pone.0072900 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chen C, Zhang H, Xu H, Zheng Y, Wu T, Lian Y (2017) Ginsenoside Rb1 ameliorates cisplatin-induced learning and memory impairments. Journal of Ginseng Research (JGR).  https://doi.org/10.1016/j.jgr.2017.07.009
  21. Chtourou Y, Gargouri B, Kebieche M, Fetoui H (2015) Naringin abrogates cisplatin-induced cognitive deficits and cholinergic dysfunction through the down-regulation of AChE expression and iNOS signaling pathways in hippocampus of aged rats. J Mol Neurosci 56:349–362.  https://doi.org/10.1007/s12031-015-0547-0 CrossRefPubMedGoogle Scholar
  22. Chu C, Deng J, Man Y, Qu Y (2017) Green tea extracts epigallocatechin-3-gallate for different treatments. Biomed Res Int 2017:5615647–5615649.  https://doi.org/10.1155/2017/5615647 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Du GJ, Zhang Z, Wen XD, Yu C, Calway T, Yuan CS, Wang CZ (2012) Epigallocatechin gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients 4:1679–1691.  https://doi.org/10.3390/nu4111679 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Durand JP, Deplanque G, Montheil V, Gornet JM, Scotte F, Mir O, Cessot A, Coriat R, Raymond E, Mitry E, Herait P, Yataghene Y, Goldwasser F (2012) Efficacy of venlafaxine for the prevention and relief of oxaliplatin-induced acute neurotoxicity: results of EFFOX, a randomized, double-blind, placebo-controlled phase III trial. Ann Oncol 23:200–205.  https://doi.org/10.1093/annonc/mdr045 CrossRefPubMedGoogle Scholar
  25. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95.  https://doi.org/10.1016/0006-2952(61)90145-9 CrossRefPubMedGoogle Scholar
  26. Fu Z, Zhen W, Yuskavage J, Liu D (2011) Epigallocatechin gallate delays the onset of type 1 diabetes in spontaneous non-obese diabetic mice. Br J Nutr 105:1218–1225.  https://doi.org/10.1017/S0007114510004824 CrossRefPubMedGoogle Scholar
  27. Ganz PA, Bower JE, Kwan L, Castellon SA, Silverman DHS, Geist C, Breen EC, Irwin MR, Cole SW (2013) Does tumor necrosis factor-alpha (TNF-a) play a role in post-chemotherapy cerebral dysfunction? Brain Behav Immun 30:S99–S108.  https://doi.org/10.1016/j.bbi.2012.07.015
  28. Gorgun MF, Zhuo M, Englander EW (2017) Cisplatin toxicity in dorsal root ganglion neurons is relieved by meclizine via diminution of mitochondrial compromise and improved clearance of DNA damage. Mol Neurobiol 54:7883–7895.  https://doi.org/10.1007/s12035-016-0273-9 CrossRefPubMedGoogle Scholar
  29. Guan Z, Fang J (2006) Peripheral immune activation by lipopolysaccharide decreases neurotrophins in the cortex and hippocampus in rats. Brain Behav Immun 20:64–71.  https://doi.org/10.1016/j.bbi.2005.04.005 CrossRefPubMedGoogle Scholar
  30. Gulec M, Oral E, Dursun OB, Yucel A, Hacimuftuoglu A, Akcay F, Suleyman H (2013) Mirtazapine protects against cisplatin-induced oxidative stress and DNA damage in the rat brain. Psychiatry Clin Neurosci 67:50–58.  https://doi.org/10.1111/j.1440-1819.2012.02395.x CrossRefPubMedGoogle Scholar
  31. Guo S, Bezard E, Zhao B (2005) Protective effect of green tea polyphenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through ROS-NO pathway. Free Radic Biol Med 39:682–695.  https://doi.org/10.1016/j.freeradbiomed.2005.04.022 CrossRefPubMedGoogle Scholar
  32. Haider S, Saleem S, Perveen T, Tabassum S, Batool Z, Sadir S, Liaquat L, Madiha S (2014) Age-related learning and memory deficits in rats: role of altered brain neurotransmitters, acetylcholinesterase activity and changes in antioxidant defense system. Age (Dordr) 36:9653.  https://doi.org/10.1007/s11357-014-9653-0 CrossRefGoogle Scholar
  33. Han J, Wang M, Jing X, Shi H, Ren M, Lou H (2014) (−)-Epigallocatechin gallate protects against cerebral ischemia-induced oxidative stress via Nrf2/ARE signaling. Neurochem Res 39:1292–1299.  https://doi.org/10.1007/s11064-014-1311-5 CrossRefPubMedGoogle Scholar
  34. Hasselmo ME (2006) The role of acetylcholine in learning and memory. Curr Opin Neurobiol 16:710–715.  https://doi.org/10.1016/j.conb.2006.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  35. He Q, Bao L, Zimering J, Zan K, Zhang Z, Shi H, Zu J, Yang X, Hua F, Ye X, Cui G (2015) The protective role of (−)-epigallocatechin-3-gallate in thrombin-induced neuronal cell apoptosis and JNK-MAPK activation. Neuroreport. 26:416–423.  https://doi.org/10.1097/WNR.0000000000000363 CrossRefPubMedPubMedCentralGoogle Scholar
  36. He Y, Tan D, Mi Y, Zhou Q, Ji S (2017a) Epigallocatechin-3-gallate attenuates cerebral cortex damage and promotes brain regeneration in acrylamide-treated rats. Food Funct 8:2275–2282.  https://doi.org/10.1039/c6fo01823h
  37. He Y, Tan D, Bai B, Wu Z, Ji S (2017b) Epigallocatechin-3-gallate attenuates acrylamide-induced apoptosis and astrogliosis in rat cerebral cortex. Toxicol Mech Methods 27:298–306.  https://doi.org/10.1080/15376516.2017.1279251 
  38. Hershman DL, Lacchetti C, Dworkin RH, Lavoie Smith EM, Bleeker J, Cavaletti G, Chauhan C, Gavin P, Lavino A, Lustberg MB, Paice J, Schneider B, Smith ML, Smith T, Terstriep S, Wagner-Johnston N, Bak K, Loprinzi CL, American Society of Clinical Oncology (2014) Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 32:1941–1967.  https://doi.org/10.1200/JCO.2013.54.0914 CrossRefPubMedGoogle Scholar
  39. Ho KF, Swindell R, Brammer CV (2008) Dose intensity comparison between weekly and 3-weekly cisplatin delivered concurrently with radical radiotherapy for head and neck cancer: a retrospective comparison from New Cross Hospital, Wolverhampton,UK. Acta Oncol 47:1513–1518.  https://doi.org/10.1080/02841860701846160 CrossRefPubMedGoogle Scholar
  40. Hu F, Wei F, Wang Y, Wu B, Fang Y, Xiong B (2015) EGCG synergizes the therapeutic effect of cisplatin and oxaliplatin through autophagic pathway in human colorectal cancer cells. J Pharmacol Sci 128:27–34.  https://doi.org/10.1016/j.jphs.2015.04.003 CrossRefPubMedGoogle Scholar
  41. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736.  https://doi.org/10.1146/annurev.neuro.24.1.677 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Innamorato NG, Rojo AI, Garcia-Yague AJ, Yamamoto M, de Ceballos ML, Cuadrado A (2008) The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol 181:680–689.  https://doi.org/10.4049/jimmunol.181.1.680 CrossRefPubMedGoogle Scholar
  43. Itoh T, Tabuchi M, Mizuguchi N, Imano M, Tsubaki M, Nishida S, Hashimoto S, Matsuo K, Nakayama T, Ito A, Munakata H, Satou T (2013) Neuroprotective effect of (−)-epigallocatechin-3-gallate in rats when administered pre- or post-traumatic brain injury. J Neural Transm 120:767–783.  https://doi.org/10.1007/s00702-012-0918-4 CrossRefPubMedGoogle Scholar
  44. Jangra A, Datusalia AK, Khandwe S, Sharma SS (2013) Amelioration of diabetes-induced neurobehavioral and neurochemical changes by melatonin and nicotinamide: implication of oxidative stress-PARP pathway. Pharmacol Biochem Behav 114-115:43–51.  https://doi.org/10.1016/j.pbb.2013.10.021 CrossRefPubMedGoogle Scholar
  45. Jangra A, Kwatra M, Singh T, Pant R, Kushwah P, Ahmed S, Dwivedi D, Saroha B, Lahkar M (2016) Edaravone alleviates cisplatin-induced neurobehavioral deficits via modulation of oxidative stress and inflammatory mediators in the rat hippocampus. Eur J Pharmacol 791:51–61CrossRefPubMedGoogle Scholar
  46. Kamisli S, Ciftci O, Cetin A, Kaya K, Kamisli O, Celik H (2014) Fish oil protects the peripheral and central nervous systems against cisplatin-induced neurotoxicity. Nutr Neurosci 17:116–126.  https://doi.org/10.1179/1476830513Y.0000000074 CrossRefPubMedGoogle Scholar
  47. Kanat O, Ertas H, Caner B (2017) Platinum-induced neurotoxicity: a review of possible mechanisms. World J Clin Oncol 8:329–335.  https://doi.org/10.5306/wjco.v8.i4.329 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kanwar J, Taskeen M, Mohammad I, Huo C, Chan TH, Dou QP (2012) Recent advances on tea polyphenols. Front Biosci (Elite Ed) 4:111–131.  https://doi.org/10.2741/363 CrossRefGoogle Scholar
  49. Kasbe P, Jangra A, Lahkar M (2015) Mangiferin ameliorates aluminium chloride-induced cognitive dysfunction via alleviation of hippocampal oxido-nitrosative stress, proinflammatory cytokines and acetylcholinesterase level. J Trace Elem Med Biol 31:107–112.  https://doi.org/10.1016/j.jtemb.2015.04.002 CrossRefPubMedGoogle Scholar
  50. Kipnis J, Derecki NC, Yang C, Scrable H (2008) Immunity and cognition: what do age-related dementia, HIV-dementia and ‘chemo-brain’ have in common? Trends Immunol 29:455–463.  https://doi.org/10.1016/j.it.2008.07.007 CrossRefPubMedGoogle Scholar
  51. Kostova I (2006) Platinum complexes as anticancer agents. Rec Pat Anti-Canc Drug Disc 1:1–22.  https://doi.org/10.2174/157489206775246458 CrossRefGoogle Scholar
  52. Kumar P, Kumar A (2009) Protective effects of epigallocatechingallate following 3-nitropropionic acid-induced brain damage: possible nitric oxide mechanisms. Psychopharmacology 207:257–270.  https://doi.org/10.1007/s00213-009-1652-y CrossRefPubMedGoogle Scholar
  53. Lakshmi BV, Sudhakar M, Anisha M (2014) Neuroprotective role of hydroalcoholic extract of Vitisvinifera against aluminium-induced oxidative stress in rat brain. Neurotoxicology 41:73–79.  https://doi.org/10.1016/j.neuro.2014.01.003 CrossRefPubMedGoogle Scholar
  54. Lambert JD, Elias RJ (2010) The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys 501:65–72.  https://doi.org/10.1016/j.abb.2010.06.013 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lapchak PA, Araujo DM, Hefti F (1993) Systemic interleukin-1 beta decreases brain-derived neurotrophic factor messenger RNA expression in the rat hippocampal formation. Neuroscience 53:297–301.  https://doi.org/10.1016/0306-4522(93)90196-M CrossRefPubMedGoogle Scholar
  56. Lawenda BD, Kelly KM, Ladas EJ, Sagar SM, Vickers A, Blumberg JB (2008) Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy? J Natl Cancer Inst 100:773–783.  https://doi.org/10.1093/jnci/djn148 CrossRefPubMedGoogle Scholar
  57. Leal AD, Qin R, Atherton PJ, Haluska P, Behrens RJ, Tiber CH, Watanaboonyakhet P, Weiss M, Adams PT, Dockter TJ, Loprinzi CL, for the Alliance for Clinical Trials in Oncology (2014) North Central Cancer Treatment Group/Alliance trial N08CA: the use of glutathione for prevention of paclitaxel/carboplatin-induced peripheral neuropathy: a phase 3 randomized, double-blind, placebo-controlled study. Cancer 120:1890–1897.  https://doi.org/10.1002/cncr.28654 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Li J (2018) Neuroprotective effect of (−)-epigallocatechin-3-gallate on autoimmune thyroiditis in a rat model by an anti-inflammation effect, anti-apoptosis and inhibition of TRAIL signaling pathway. Exp Ther Med 15:1087–1092.  https://doi.org/10.3892/etm.2017.5511 CrossRefPubMedGoogle Scholar
  59. Lin MT, Ko JL, Liu TC, Chao PT, Ou CC (2018) Protective effect of D-methionine on body weight loss, anorexia, and nephrotoxicity in cisplatin-induced chronic toxicity in rats. Integr Cancer Ther 17(3):813–824.  https://doi.org/10.1177/1534735417753543 Epub 2018 Feb 11CrossRefPubMedPubMedCentralGoogle Scholar
  60. Liu GH, Qu J, Shen X (2008) NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim Biophys Acta 1783:713–727.  https://doi.org/10.1016/j.bbamcr.2008.01.002 CrossRefPubMedGoogle Scholar
  61. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2(−Delta DeltaC(T)) method. Methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Lomeli N, Di K, Czerniawski J, Guzowski JF, Bota DA (2017) Cisplatin-induced mitochondrial dysfunction is associated with impaired cognitive function in rats. Free Radic Biol Med 102:274–286.  https://doi.org/10.1016/j.freeradbiomed.2016.11.046 CrossRefPubMedGoogle Scholar
  63. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  64. Lu CL, Tang S, Meng ZJ, He YY, Song LY, Liu YP, Ma N, Li XY, Guo SC (2014) Taurine improves the spatial learning and memory ability impaired by sub-chronic manganese exposure. J Biomed Sci 21:51.  https://doi.org/10.1186/1423-0127-21-51 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Mandel SA, Avramovich-Tirosh Y, Reznichenko L, Zheng H, Weinreb O, Amit T, Youdim MB (2005) Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway. Neurosignals 14:46–60.  https://doi.org/10.1159/000085385 CrossRefPubMedGoogle Scholar
  66. McWhinney SR, Goldberg RM, McLeod HL (2009) Platinum neurotoxicity pharmacogenetics. Mol Cancer Ther 8:10–16.  https://doi.org/10.1158/1535-7163.MCT-08-0840 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Mills PJ, Parker B, Dimsdale JE, Sadler GR, Ancoli-Israel S (2005) The relationship between fatigue and quality of life and inflammation during anthracycline-based chemotherapy in breast cancer. Biol Psychol 69:85–96.  https://doi.org/10.1016/j.biopsycho.2004.11.007 CrossRefPubMedGoogle Scholar
  68. Nagle DG, Ferreira D, Zhou YD (2006) Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives. Phytochemistry 67:1849–1855.  https://doi.org/10.1016/j.phytochem.2006.06.020 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Nair S, Doh ST, Chan JY, Kong AN, Cai L (2008) Regulatory potential for concerted modulation of Nrf2- and Nfkb1-mediated gene expression in inflammation and carcinogenesis. Br J Cancer 99:2070–2082.  https://doi.org/10.1038/sj.bjc.6604703 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Nair AB, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7(2):27–31.  https://doi.org/10.4103/0976-0105.177703 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Namikawa K, Asakura M, Minami T, Okazaki Y, Kadota E, Hashimoto S (2000) Toxicity of cisplatin to the central nervous system of male rabbits. Biol Trace Elem Res 74:223–235.  https://doi.org/10.1385/BTER:74:3:223 CrossRefPubMedGoogle Scholar
  72. Nie G, Jin C, Cao Y, Shen S, Zhao B (2002) Distinct effects of tea catechins on 6-hydroxydopamine-induced apoptosis in PC12 cells. Arch Biochem Biophys 397:84–90.  https://doi.org/10.1006/abbi.2001.2636 CrossRefPubMedGoogle Scholar
  73. Nowis D, Legat M, Bil J, Kurzaj Z, Issat T, Stoklosa T, Mioduszewska B, Kaczmarek L, Jakóbisiak M, Golab J (2007) Erythropoietin reduces cisplatin-induced neurotoxicity without impairment of cytotoxic effects against tumor cells. Int J Oncol 31:1547–1552.  https://doi.org/10.3892/ijo.31.6.1547 CrossRefPubMedGoogle Scholar
  74. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358.  https://doi.org/10.1016/0003-2697(79)90738-3 CrossRefPubMedGoogle Scholar
  75. Owoeye O, Adedara IA, Farombi EO (2018) Pretreatment with taurine prevented brain injury and exploratory behaviour associated with administration of anticancer drug cisplatin in rats. Biomed Pharmacother 102:375–384.  https://doi.org/10.1016/j.biopha.2018.03.051 CrossRefPubMedGoogle Scholar
  76. Oz M, Nurullahoglu Atalik KE, Yerlikaya FH, Demir EA (2015) Curcumin alleviates cisplatin-induced learning and memory impairments. Neurobiol Learn Mem 123:43–49.  https://doi.org/10.1016/j.nlm.2015.05.001 CrossRefPubMedGoogle Scholar
  77. Pace A, Giannarelli D, Galiè E et al (2010) Vitamin E neuroprotection for cisplatin neuropathy: a randomized, placebo-controlled trial. Neurology 74:762–766.  https://doi.org/10.1212/WNL.0b013e3181d5279e CrossRefPubMedGoogle Scholar
  78. Pan H, Chen J, Shen K, Wang X, Wang P, Fu G, Meng H, Wang Y, Jin B (2015) Mitochondrial modulation by epigallocatechin 3-gallate ameliorates cisplatin induced renal injury through decreasing oxidative/nitrative stress, inflammation and NF-kB in mice. PLoS One 10:e0124775.  https://doi.org/10.1371/journal.pone.0124775 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Phyu MP, Tangpong J (2014) Neuroprotective effects of xanthone derivative of Garciniamangostana against lead-induced acetylcholinesterase dysfunction and cognitive impairment. Food Chem Toxicol 70:151–156.  https://doi.org/10.1016/j.fct.2014.04.035 CrossRefPubMedGoogle Scholar
  80. Planting AS, Catimel G, de Mulder PH et al (1999) Randomized study of a short course of weekly cisplatin with or without amifostine in advanced head and neck cancer. EORTC Head and Neck Cooperative Group. Ann Oncol 10:693–700CrossRefPubMedGoogle Scholar
  81. Podratz JL, Knight AM, Ta LE, Staff NP, Gass JM, Genelin K, Schlattau A, Lathroum L, Windebank AJ (2011) Cisplatin induced mitochondrial DNA damage in dorsal root ganglion neurons. Neurobiol Dis 41:661–668.  https://doi.org/10.1016/j.nbd.2010.11.017 CrossRefPubMedGoogle Scholar
  82. Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661.  https://doi.org/10.1096/fj.07-9574LSF CrossRefPubMedPubMedCentralGoogle Scholar
  83. Renno WM, Al-Maghrebi M, Alshammari A, George P (2013) (−)-Epigallocatechin-3-gallate (EGCG) attenuates peripheral nerve degeneration in rat sciatic nerve crush injury. Neurochem Int 62:221–231.  https://doi.org/10.1016/j.neuint.2012.12.018 CrossRefPubMedGoogle Scholar
  84. Renno WM, Al-Khaledi G, Mousa A, Karam SM, Abul H, Asfar S (2014) (−)-Epigallocatechin-3-gallate (EGCG) modulates neurological function when intravenously infused in acute and, chronically injured spinal cord of adult rats. Neuropharmacology 77:100–119.  https://doi.org/10.1016/j.neuropharm.2013.09.013 CrossRefPubMedGoogle Scholar
  85. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radicals Biol Med 49:1603–1616.  https://doi.org/10.1016/j.freeradbiomed.2010.09.006 CrossRefGoogle Scholar
  86. Rodriguez-Menendez V, Gilardini A, Bossi M et al (2008) Valproate protective effects on cisplatin-induced peripheral neuropathy: an in vitro and in vivo study. Anticancer Res 28:335–342PubMedGoogle Scholar
  87. Romeo L, Intrieri M, D’Agata V, Mangano NG, Oriani G, Ontario ML, Scapagnini G (2009) The major green tea polyphenol, (−)-epigallocatechin-3-gallate, induces heme oxygenase in rat neurons and acts as an effective neuroprotective agent against oxidative stress. J Am Coll Nutr 28:492S–499S.  https://doi.org/10.1080/07315724.2009.10718116 CrossRefPubMedGoogle Scholar
  88. Sandberg M, Patil J, D’Angelo B, Weber SG, Mallard C (2014) NRF2-regulation in brain health and disease: implication of cerebral inflammation. Neuropharmacology 79:298–306.  https://doi.org/10.1016/j.neuropharm.2013.11.004 CrossRefPubMedGoogle Scholar
  89. Sayre LM, Perry G, Smith MA (2008) Oxidative stress and neurotoxicity. Chem Res Toxicol 21:172–188.  https://doi.org/10.1021/tx700210j CrossRefPubMedGoogle Scholar
  90. Schaffer S, Asseburg H, Kuntz S, Muller WE, Eckert GP (2012) Effects of polyphenols on brain ageing and Alzheimer’s disease: focus on mitochondria. Mol Neurobiol 46:161–178.  https://doi.org/10.1007/s12035-012-8282-9 CrossRefPubMedGoogle Scholar
  91. Seigers R, Schagen SB, Van Tellingen O, Dietrich J (2013) Chemotherapy-related cognitive dysfunction: current animal studies and future directions. Brain Imaging Behav 7:453459–453459.  https://doi.org/10.1007/s11682-013-9250-3 CrossRefGoogle Scholar
  92. Shabani M, Larizadeh MH, Parsania S, Hajali V, Shojaei A (2012a) Evaluation of destructive effects of exposure to cisplatin during developmental stage: no profound evidence for sex differences in impaired motor and memory performance. Int J Neurosci 122:439–448.  https://doi.org/10.3109/00207454.2012.673515 CrossRefPubMedGoogle Scholar
  93. Shabani M, Nazeri M, Parsania S, Razavinasab M, Zangiabadi N, Esmaeilpour K, Abareghi F (2012b) Walnut consumption protects rats against cisplatin-induced neurotoxicity. Neurotoxicology 33:1314–1321.  https://doi.org/10.1016/j.neuro.2012.08.004 CrossRefPubMedGoogle Scholar
  94. Shanmugam T, Abdulla S, Yakulasamy V, Selvaraj M, Mathan RA (2018) Mechanism underlying the neurotoxicity induced by sodium fluoride and its reversal by epigallocatechingallate in the rat hippocampus: involvement of NrF2/Keap-1 signaling pathway. The Journal of Basic and Applied Zoology 79:17.  https://doi.org/10.1186/s41936-018-0020-z CrossRefGoogle Scholar
  95. Shi SS, Shao SH, Yuan BP, Pan F, Li ZL (2010) Acute stress and chronic stress change brain-derivedneurotrophic factor (BDNF) and tyrosine kinase-coupled receptor (TrkB) expression in both young and aged rat hippocampus. Yonsei Med J 51:661–671.  https://doi.org/10.3349/ymj.2010.51.5.661 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Singh R, Akhtar N, Haqqi TM (2010) Green tea polyphenol epigallocatechin-3-gallate: inflammation and arthritis. (corrected). Life Sci 86:907–918.  https://doi.org/10.1016/j.lfs.2010.04.013 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Song TY, Chen CL, Liao JW, Ou HC, Tsai MS (2010) Ergothioneine protects against neuronal injury induced by cisplatin both in vitro and in vivo. Food Chem Toxicol 48:3492–3499.  https://doi.org/10.1016/j.fct.2010.09.030 CrossRefPubMedGoogle Scholar
  98. Song XY, Li F, Zhang FH, Zhong JH, Zhou XF (2008) Peripherally-derived BDNF promotes regeneration of ascending sensory neurons after spinal cord injury. PLoS One 3:e1707.  https://doi.org/10.1371/journal.pone.0001707 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Stathopoulos GP (2010) Liposomal cisplatin: a new cisplatin formulation. Anti-Cancer Drugs 21:732–736.  https://doi.org/10.1097/CAD.0b013e32833d9adf CrossRefPubMedGoogle Scholar
  100. Sun YX, Yang J, Wang PY, Li YJ, Xie SY, Sun RP (2013) Cisplatin regulates SH- SY5Y cell growth through downregulation of BDNF via miR-16. Oncol Rep 30:2343–2349.  https://doi.org/10.3892/or.2013.2731 CrossRefPubMedGoogle Scholar
  101. Thangapandiyan S, Miltonprabu S (2013) Epigallocatechin gallate effectively ameliorates fluoride-induced oxidative stress and DNA damage in the liver of rats. Can J Physiol Pharmacol 91:528–537.  https://doi.org/10.1139/cjpp-2012-0347 CrossRefPubMedGoogle Scholar
  102. Thangapandiyan S, Miltonprabu S (2014) Epigallocatechingallate supplementation protects against renal injury induced by Fl intoxication in rats: role of Nrf2/HO-1 signaling. Toxicol Rep 1:12–30.  https://doi.org/10.1016/j.toxrep.2014.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Thangapandiyan S, Miltonprabu S, Senthilraja P (2016) Epigallocatechingallate potentially abrogates fluoride induced lung oxidative stress, inflammation via Nrf2/Keap 1 signaling pathway in rats. An in-vivo and in-silico study. Int Immunopharmacol 39:128–129.  https://doi.org/10.1016/j.intimp.2016.07.022 CrossRefGoogle Scholar
  104. Troy L, McFarland K, Littman-Power S, Kelly BJ, Walpole ET, Wyld D, Thomson D (2000) Cisplatin-based therapy: a neurological and neuropsychological review. Psychooncology 9:29–39.  https://doi.org/10.1002/(SICI)1099-1611(200001/02)9:1<29::AID-PON428>3.0.CO;2-Z CrossRefPubMedGoogle Scholar
  105. Tuncer S, Dalkilic N, Akif Dunbar M, Keles B (2010) Comparative effects of α lipoic acid and melatonin on cisplatin-induced neurotoxicity. Int J Neurosci 120:655–663.  https://doi.org/10.3109/00207454.2010.510916 CrossRefPubMedGoogle Scholar
  106. Tunçtan B, Uludag O, Altug S, Abacioglu N (1998) Effects of nitric oxide synthase inhibition in lipopolysaccharide-induced sepsis in mice. Pharmacol Res 38:405–411.  https://doi.org/10.1006/phrs.1998.0381 CrossRefPubMedGoogle Scholar
  107. Unno K, Takabayashi F, Kishido T, Oku N (2004) Suppressive effect of green tea catechins on morphologic and functional regression of the brain in aged mice with accelerated senescence (SAMP10). Exp Gerontol 39:1027–1034.  https://doi.org/10.1016/j.exger.2004.03.033 CrossRefPubMedGoogle Scholar
  108. Unno K, Takabayashi F, Yoshida H, Choba D, Fukutomi R, Kikunaga N, Kishido T, Oku N, Hoshino M (2007) Daily consumption of green tea catechin delays memory regression in aged mice. Biogerontology 8:89–95.  https://doi.org/10.1007/s10522-006-9036-8 CrossRefPubMedGoogle Scholar
  109. Vaynman S, Ying Z, Gomez-Pinilla F (2004) Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 20:2580–2590.  https://doi.org/10.1111/j.1460-9568.2004.03720.x CrossRefPubMedGoogle Scholar
  110. Wang X, Jiang P, Wang P, Yang CS, Wang X, Feng Q (2015) EGCG enhances cisplatin sensitivity by regulating expression of the copper and cisplatin influx transporter CTR1 in ovary cancer. PLoS One 10:e0125402.  https://doi.org/10.1371/journal.pone.0125402 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Weinreb O, Mandel S, Amit T, Youdim MBH (2004) Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J Nutr Biochem 15:506–516.  https://doi.org/10.1016/j.jnutbio.2004.05.002 CrossRefPubMedGoogle Scholar
  112. Wu YJ, Muldoon LL, Neuwelt EA (2005) The chemoprotective agent N-acetyl cysteine blocks cisplatin-induced apoptosis through caspase signaling pathway. J Pharmacol Exp Ther 312:424–431.  https://doi.org/10.1124/jpet.104.075119 CrossRefPubMedGoogle Scholar
  113. Xu D, Lian D, Wu J, Liu Y, Zhu M, Sun J, He D, Li L (2017) Brain-derived neurotrophic factor reduces inflammation and hippocampal apoptosis in experimental Streptococcus pneumoniae meningitis. J Neuroinflammation 14:156.  https://doi.org/10.1186/s12974-017-0930-6 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Yu M, Li H, Liu Q, Liu F, Tang L, Li C, Yuan Y, Zhan Y, Xu W, Li W, Chen H, Ge C, Wang J, Yang X (2011) Nuclear factor p65 interacts with Keap1 to repress the Nrf2-ARE pathway. Cell Signal 23:883–892.  https://doi.org/10.1016/j.cellsig.2011.01.014 CrossRefPubMedGoogle Scholar
  115. Zhang X, Wu M, Lu F, Luo N, He ZP, Yang H (2014) Involvement of alpha7 nAChR signaling cascade in epigallocatechin gallate suppression of beta-amyloid-induced apoptotic cortical neuronal insults. Mol Neurobiol 49:66–77.  https://doi.org/10.1007/s12035-013-8491-x CrossRefPubMedGoogle Scholar
  116. Zhou W, Kavelaars A, Heijnen CJ (2016) Metformin prevents cisplatin-induced cognitive impairment and brain damage in mice. PLoS One 11:e0151890.  https://doi.org/10.1371/journal.pone.0151890 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Zuccato C, Ciammola A, Rigamonti D et al (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293:493–498.  https://doi.org/10.1126/science.1059581 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Forensic Medicine and Clinical Toxicology, Faculty of MedicineZagazig UniversityZagazigEgypt
  2. 2.Department of Biochemistry, Faculty of PharmacyZagazig UniversityZagazigEgypt

Personalised recommendations