Advertisement

Neurotoxicity Research

, Volume 35, Issue 4, pp 981–986 | Cite as

The Neuroprotective Effect of Doxycycline on Neurodegenerative Diseases

  • Flávia Viana Santa-Cecília
  • Caio Abner Leite
  • Elaine Del-Bel
  • Rita Raisman-VozariEmail author
Review Article
  • 186 Downloads

Abstract

Neurodegenerative diseases (NDs) are a group of chronic, progressive disorders characterized by the gradual loss of neurons that affect specific regions of the brain, which leads to deficits in specific functions (e.g., memory, movement, cognition). The mechanism that drives chronic progression of NDs remains elusive. Among the proposed underlying pathophysiological mechanisms, aggregation and accumulation of misfolded proteins and neuroinflammation have been credited to contribute to extensive neural loss. Therapeutic agents that confer neuroprotection by downregulating these shared characteristics could therefore have beneficial effects on a wide range of NDs. In this regard, a commonly used antibiotic, doxycycline (Doxy), has been shown to reduce the progression and severity of disease in different experimental models of neurodegeneration by counteracting these common features. This review will focus on the effects reported for Doxy regarding its neuroprotective properties, the “off-target” effects, thereby supporting its evaluation as a new therapeutic approach for diseases associated with a neurodegeneration.

Keywords

Neurodegeneration Doxycycline Less neurons Misfolded proteins Neuroinflammation 

Notes

References

  1. Ahler E, Sullivan WJ, Cass A, Braas D, York AG, Bensinger SJ, Graeber TG, Christofk HR (2013) Doxycycline alters metabolism and proliferation of human cell lines. PLoS One 8:e64561.  https://doi.org/10.1371/journal.pone.0064561 CrossRefGoogle Scholar
  2. Balducci C, Santamaria G, la Vitola P, Brandi E, Grandi F, Viscomi AR, Beeg M, Gobbi M, Salmona M, Ottonello S, Forloni G (2018) Doxycycline counteracts neuroinflammation restoring memory in Alzheimer’s disease mouse models. Neurobiol Aging 70:128–139.  https://doi.org/10.1016/j.neurobiolaging.2018.06.002 CrossRefGoogle Scholar
  3. Bortolanza M, Nascimento GC, Socias SB, Ploper D, Chehin RN, Raisman-Vozari R, Del-Bel E (2018) Tetracycline repurposing in neurodegeneration: focus on Parkinson’s disease. J Neural Transm 125:1403–1415.  https://doi.org/10.1007/s00702-018-1913-1 CrossRefGoogle Scholar
  4. Brezovakova V, Valachova B, Hanes J, Novak M, Jadhav S (2018) Dendritic cells as an alternate approach for treatment of neurodegenerative disorders. Cell Mol Neurobiol 38:1207–1214.  https://doi.org/10.1007/s10571-018-0598-1 CrossRefGoogle Scholar
  5. Chen WW, Zhang X, Huang WJ (2016) Role of neuroinflammation in neurodegenerative diseases (review). Mol Med Rep 13:3391–3396.  https://doi.org/10.3892/mmr.2016.4948 CrossRefGoogle Scholar
  6. Cho Y, Son HJ, Kim EM, Choi JH, Kim ST, Ji IJ, Choi DH, Joh TH, Kim YS, Hwang O (2009) Doxycycline is neuroprotective against nigral dopaminergic degeneration by a dual mechanism involving MMP-3. Neurotox Res 16:361–371.  https://doi.org/10.1007/s12640-009-9078-1 CrossRefGoogle Scholar
  7. Chui DH, Tabira T, Izumi S, Koya G, Ogata J (1994) Decreased beta-amyloid and increased abnormal Tau deposition in the brain of aged patients with leprosy. Am J Pathol 145:771–775Google Scholar
  8. Collins SJ, Lawson VA, Masters CL (2004) Transmissible spongiform encephalopathies. Lancet 363:51–61.  https://doi.org/10.1016/S0140-6736(03)15171-9 CrossRefGoogle Scholar
  9. Costa R, Speretta E, Crowther DC, Cardoso I (2011) Testing the therapeutic potential of doxycycline in a Drosophila melanogaster model of Alzheimer disease. J Biol Chem 286:41647–41655.  https://doi.org/10.1074/jbc.M111.274548 CrossRefGoogle Scholar
  10. De Luigi A et al (2008) The efficacy of tetracyclines in peripheral and intracerebral prion infection. PLoS One 3:e1888.  https://doi.org/10.1371/journal.pone.0001888 CrossRefGoogle Scholar
  11. Di Caprio R, Lembo S, Di Costanzo L, Balato A, Monfrecola G (2015) Anti-inflammatory properties of low and high doxycycline doses: an in vitro study Mediators of inflammation. Mediat Inflamm 2015:329418.  https://doi.org/10.1155/2015/329418 CrossRefGoogle Scholar
  12. Diomede L, Cassata G, Fiordaliso F, Salio M, Ami D, Natalello A, Doglia SM, de Luigi A, Salmona M (2010) Tetracycline and its analogues protect Caenorhabditis elegans from beta amyloid-induced toxicity by targeting oligomers. Neurobiol Dis 40:424–431.  https://doi.org/10.1016/j.nbd.2010.07.002 CrossRefGoogle Scholar
  13. Dohm CP, Kermer P, Bahr M (2008) Aggregopathy in neurodegenerative diseases: mechanisms and therapeutic implication. Neurodegener Dis 5:321–338.  https://doi.org/10.1159/000119459 CrossRefGoogle Scholar
  14. Domercq M, Matute C (2004) Neuroprotection by tetracyclines. Trends Pharmacol Sci 25:609–612.  https://doi.org/10.1016/j.tips.2004.10.001 CrossRefGoogle Scholar
  15. Forloni G, Colombo L, Girola L, Tagliavini F, Salmona M (2001) Anti-amyloidogenic activity of tetracyclines: studies in vitro. FEBS Lett 487:404–407CrossRefGoogle Scholar
  16. Forloni G, Salmona M, Marcon G, Tagliavini F (2009) Tetracyclines and prion infectivity. Infect Disord Drug Targets 9:23–30CrossRefGoogle Scholar
  17. Forloni G, Artuso V, Roiter I, Morbin M, Tagliavini F (2013) Therapy in prion diseases. Curr Top Med Chem 13:2465–2476CrossRefGoogle Scholar
  18. Forloni G, Tettamanti M, Lucca U, Albanese Y, Quaglio E, Chiesa R, Erbetta A, Villani F, Redaelli V, Tagliavini F, Artuso V, Roiter I (2015) Preventive study in subjects at risk of fatal familial insomnia: innovative approach to rare diseases. Prion 9:75–79.  https://doi.org/10.1080/19336896.2015.1027857 CrossRefGoogle Scholar
  19. Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272CrossRefGoogle Scholar
  20. Gandhi S, Wood NW (2005) Molecular pathogenesis of Parkinson’s disease. Hum Mol Genet 14:2749–2755.  https://doi.org/10.1093/hmg/ddi308 CrossRefGoogle Scholar
  21. Golub LM, Elburki MS, Walker C, Ryan M, Sorsa T, Tenenbaum H, Goldberg M, Wolff M, Gu Y (2016) Non-antibacterial tetracycline formulations: host-modulators in the treatment of periodontitis and relevant systemic diseases. Int Dent J 66:127–135.  https://doi.org/10.1111/idj.12221 CrossRefGoogle Scholar
  22. Gonzalez-Lizarraga F et al (2017) Repurposing doxycycline for synucleinopathies: remodelling of alpha-synuclein oligomers towards non-toxic parallel beta-sheet structured species. Sci Rep 7:41755.  https://doi.org/10.1038/srep41755 CrossRefGoogle Scholar
  23. Gustot A, Gallea JI, Sarroukh R, Celej MS, Ruysschaert JM, Raussens V (2015) Amyloid fibrils are the molecular trigger of inflammation in Parkinson’s disease. Biochem J 471:323–333.  https://doi.org/10.1042/BJ20150617 CrossRefGoogle Scholar
  24. Haik S et al (2014) Doxycycline in Creutzfeldt-Jakob disease: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol 13:150–158.  https://doi.org/10.1016/S1474-4422(13)70307-7 CrossRefGoogle Scholar
  25. Heppner FL, Ransohoff RM, Becher B (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 16:358–372.  https://doi.org/10.1038/nrn3880 CrossRefGoogle Scholar
  26. Inglese M, Petracca M (2013) Imaging multiple sclerosis and other neurodegenerative diseases. Prion 7:47–54.  https://doi.org/10.4161/pri.22650 CrossRefGoogle Scholar
  27. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386:896–912.  https://doi.org/10.1016/S0140-6736(14)61393-3 CrossRefGoogle Scholar
  28. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489.  https://doi.org/10.1126/science.1079469 CrossRefGoogle Scholar
  29. Keijmel SP, Delsing CE, Bleijenberg G, van der Meer JWM, Donders RT, Leclercq M, Kampschreur LM, van den Berg M, Sprong T, Nabuurs-Franssen MH, Knoop H, Bleeker-Rovers CP (2017) Effectiveness of long-term doxycycline treatment and cognitive-behavioral therapy on fatigue severity in patients with Q fever fatigue syndrome (Qure study): a randomized controlled trial. Clin Infect Dis 64:998–1005.  https://doi.org/10.1093/cid/cix013 CrossRefGoogle Scholar
  30. Lassmann H, van Horssen J (2011) The molecular basis of neurodegeneration in multiple sclerosis. FEBS Lett 585:3715–3723.  https://doi.org/10.1016/j.febslet.2011.08.004 CrossRefGoogle Scholar
  31. Lazzarini M, Martin S, Mitkovski M, Vozari RR, Stuhmer W, Bel ED (2013) Doxycycline restrains glia and confers neuroprotection in a 6-OHDA Parkinson model. Glia 61:1084–1100.  https://doi.org/10.1002/glia.22496 CrossRefGoogle Scholar
  32. Lucchetti J, Fracasso C, Balducci C, Passoni A, Forloni G, Salmona M, Gobbi M (2019) Plasma and brain concentrations of doxycycline after single and repeated doses in wild-type and APP23 mice. J Pharmacol Exp Ther 368:32–40.  https://doi.org/10.1124/jpet.118.252064 CrossRefGoogle Scholar
  33. McGeer EG, McGeer PL (2003) Inflammatory processes in Alzheimer’s disease. Prog Neuro-Psychopharmacol Biol Psychiatry 27:741–749.  https://doi.org/10.1016/S0278-5846(03)00124-6 CrossRefGoogle Scholar
  34. Minagar A, Alexander JS, Schwendimann RN, Kelley RE, Gonzalez-Toledo E, Jimenez JJ, Mauro L, Jy W, Smith SJ (2008) Combination therapy with interferon beta-1a and doxycycline in multiple sclerosis: an open-label trial. Arch Neurol 65:199–204.  https://doi.org/10.1001/archneurol.2007.41 CrossRefGoogle Scholar
  35. Nelson ML, Levy SB (2011) The history of the tetracyclines. Ann N Y Acad Sci 1241:17–32.  https://doi.org/10.1111/j.1749-6632.2011.06354.x CrossRefGoogle Scholar
  36. Newman TA, Woolley ST, Hughes PM, Sibson NR, Anthony DC, Perry VH (2001) T-cell- and macrophage-mediated axon damage in the absence of a CNS-specific immune response: involvement of metalloproteinases. Brain 124:2203–2214CrossRefGoogle Scholar
  37. Noble W, Garwood CJ, Hanger DP (2009) Minocycline as a potential therapeutic agent in neurodegenerative disorders characterised by protein misfolding. Prion 3:78–83CrossRefGoogle Scholar
  38. Prusiner SB (2001) Shattuck lecture--neurodegenerative diseases and prions. N Engl J Med 344:1516–1526.  https://doi.org/10.1056/NEJM200105173442006 CrossRefGoogle Scholar
  39. Reglodi D, Renaud J, Tamas A, Tizabi Y, Socias SB, Del-Bel E, Raisman-Vozari R (2017) Novel tactics for neuroprotection in Parkinson’s disease: role of antibiotics, polyphenols and neuropeptides. Prog Neurobiol 155:120–148.  https://doi.org/10.1016/j.pneurobio.2015.10.004 CrossRefGoogle Scholar
  40. Rotermund C, Machetanz G, Fitzgerald JC (2018) The therapeutic potential of metformin in neurodegenerative diseases. Front Endocrinol 9:400.  https://doi.org/10.3389/fendo.2018.00400 CrossRefGoogle Scholar
  41. Santa-Cecilia FV et al (2016) Doxycycline suppresses microglial activation by inhibiting the p38 MAPK and NF-kB signaling pathways. Neurotox Res 29:447–459.  https://doi.org/10.1007/s12640-015-9592-2 CrossRefGoogle Scholar
  42. Schmitz M, Cramm M, Llorens F, Candelise N, Müller-Cramm D, Varges D, Schulz-Schaeffer WJ, Zafar S, Zerr I (2016) Application of an in vitro-amplification assay as a novel pre-screening test for compounds inhibiting the aggregation of prion protein scrapie. Sci Rep 6:28711.  https://doi.org/10.1038/srep28711 CrossRefGoogle Scholar
  43. Skaper SD (2007) The brain as a target for inflammatory processes and neuroprotective strategies. Ann N Y Acad Sci 1122:23–34.  https://doi.org/10.1196/annals.1403.002 CrossRefGoogle Scholar
  44. Socias SB, González-Lizárraga F, Avila CL, Vera C, Acuña L, Sepulveda-Diaz JE, del-Bel E, Raisman-Vozari R, Chehin RN (2018) Exploiting the therapeutic potential of ready-to-use drugs: repurposing antibiotics against amyloid aggregation in neurodegenerative diseases. Prog Neurobiol 162:17–36.  https://doi.org/10.1016/j.pneurobio.2017.12.002 CrossRefGoogle Scholar
  45. Soto C, Estrada LD (2008) Protein misfolding and neurodegeneration. Arch Neurol 65:184–189.  https://doi.org/10.1001/archneurol.2007.56 CrossRefGoogle Scholar
  46. Starckx S, Van den Steen PE, Verbeek R, van Noort JM, Opdenakker G (2003) A novel rationale for inhibition of gelatinase B in multiple sclerosis: MMP-9 destroys alpha B-crystallin and generates a promiscuous T cell epitope. J Neuroimmunol 141:47–57CrossRefGoogle Scholar
  47. Varges D, Manthey H, Heinemann U, Ponto C, Schmitz M, Schulz-Schaeffer WJ, Krasnianski A, Breithaupt M, Fincke F, Kramer K, Friede T, Zerr I (2017) Doxycycline in early CJD: a double-blinded randomised phase II and observational study. J Neurol Neurosurg Psychiatry 88:119–125.  https://doi.org/10.1136/jnnp-2016-313541 CrossRefGoogle Scholar
  48. Zhang GB, Feng YH, Wang PQ, Song JH, Wang P, Wang SA (2015) A study on the protective role of doxycycline upon dopaminergic neuron of LPS-PD rat model rat. Eur Rev Med Pharmacol Sci 19:3468–3474Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Flávia Viana Santa-Cecília
    • 1
  • Caio Abner Leite
    • 2
  • Elaine Del-Bel
    • 3
    • 4
  • Rita Raisman-Vozari
    • 5
    Email author
  1. 1.Laboratory of Pain and SignalingButantan InstituteSao PauloBrazil
  2. 2.A.C. Camargo Cancer CenterSao PauloBrazil
  3. 3.Department of Morphology, Physiology and Stomatology, Faculty of Odontology of Ribeirão PretoUniversity of São PauloSão PauloBrazil
  4. 4.Center of Interdisciplinary Research on Applied Neurosciences (NAPNA)University of São PauloSão PauloBrazil
  5. 5.Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225Sorbonne Université, ParisParisFrance

Personalised recommendations