Advertisement

The Role of Oxidative Stress and Bioenergetic Dysfunction in Sulfite Oxidase Deficiency: Insights from Animal Models

  • Angela T. S. Wyse
  • Mateus Grings
  • Moacir Wajner
  • Guilhian Leipnitz
Review
  • 28 Downloads

Abstract

Sulfite oxidase (SO) deficiency is an autosomal recessive inherited neurometabolic disease caused by deficient activity of SO. It is biochemically characterized by tissue accumulation and high urinary excretion of sulfite, thiosulfate, and S-sulfocysteine. Severe neurological symptoms, including neonatal seizures, encephalopathy, and psychomotor retardation, are commonly observed in the affected patients, but the pathogenesis of the neurologic dysfunction is still poorly understood. In this minireview, we will briefly summarize the knowledge obtained from in vivo and in vitro findings from animal studies indicating that oxidative stress and mitochondrial dysfunction are involved in the pathophysiology of the brain damage in this disease. Recent reports have shown that sulfite induces free radical generation, impairs brain antioxidant defenses, and disturbs mitochondrial energy metabolism and biogenesis. Moreover, it has been evidenced that free radical scavengers and the pan-PPAR agonist bezafibrate are able to prevent most deleterious effects elicited by sulfite on the brain. These promising data offer new perspectives for potential therapeutic strategies for this condition, which may include the early use of appropriate antioxidants and PPAR agonists in addition to the available treatment.

Keywords

Sulfite oxidase deficiency Sulfite Redox homeostasis Mitochondrial function Brain 

Notes

Funding Information

We thank the financial support of Edital Universal do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Programa de Apoio a Núcleos de Excelência (PRONEX II), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Pró-Reitoria de Pesquisa/Universidade Federal do Rio Grande do Sul (PROPESQ/UFRGS), Financiadora de estudos e projetos (FINEP), Rede Instituto Brasileiro de Neurociência (IBN-Net) no. 01.06.0842-00, and Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCT-EN) that were essential for the experimental work referred in various parts of this review.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Alexi T, Borlongan CV, Faull RL, Williams CE, Clark RG, Gluckman PD, Hughes PE (2000) Neuroprotective strategies for basal ganglia degeneration: Parkinson’s and Huntington’s diseases. Prog Neurobiol 60:409–470.  https://doi.org/10.1016/S0301-0082(99)00032-5 CrossRefPubMedGoogle Scholar
  2. Allen CL, Bayraktutan U (2009) Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke 4:461–470.  https://doi.org/10.1111/j.1747-4949.2009.00387.x CrossRefPubMedGoogle Scholar
  3. Aydin S, Yargicoglu P, Derin N, Aliciguzel Y, Abidin I, Agar A (2005) The effect of chronic restraint stress and sulfite on visual evoked potentials (VEPs): relation to lipid peroxidation. Food Chem Toxicol 43:1093–1101.  https://doi.org/10.1016/j.fct.2005.02.014 CrossRefPubMedGoogle Scholar
  4. Basheer SN, Waters PJ, Lam CW, Acquaviva-Bourdain C, Hendson G, Poskitt K, Hukin J (2007) Isolated sulfite oxidase deficiency in the newborn: lactic acidaemia and leukoencephalopathy. Neuropediatrics 38:38–41.  https://doi.org/10.1055/s-2007-981484 CrossRefPubMedGoogle Scholar
  5. Bayram E, Topcu Y, Karakaya P, Yis U, Cakmakci H, Ichida K, Kurul SH (2013) Molybdenum cofactor deficiency: review of 12 cases (MoCD and review). Eur J Paediatr Neurol 17:1–6.  https://doi.org/10.1016/j.ejpn.2012.10.003 CrossRefPubMedGoogle Scholar
  6. Beck-Speier I, Liese JG, Belohradsky BH, Godleski JJ (1993) Sulfite stimulates NADPH oxidase of human neutrophils to produce active oxygen radicals via protein kinase C and Ca2+/calmodulin pathways. Free Radic Biol Med 14:661–668.  https://doi.org/10.1016/0891-5849(93)90148-N CrossRefPubMedGoogle Scholar
  7. Biasibetti H, Pierozan P, Rodrigues AF, Manfredini V, Wyse ATS (2017) Hypoxanthine intrastriatal administration alters neuroinflammatory profile and redox status in striatum of infant and young adult rats. Mol Neurobiol 54:2790–2800.  https://doi.org/10.1007/s12035-016-9866-6 CrossRefPubMedGoogle Scholar
  8. Bonnefont JP, Bastin J, Laforêt P, Aubey F, Mogenet A, Romano S, Ricquier D, Gobin-Limballe S, Vassault A, Behin A, Eymard B, Bresson JL, Djouadi F (2010) Long-term follow-up of bezafibrate treatment in patients with the myopathic form of carnitine palmitoyltransferase 2 deficiency. Clin Pharmacol Ther 88:101–108.  https://doi.org/10.1038/clpt.2010.55 CrossRefPubMedGoogle Scholar
  9. Brumaru D, Guerin E, Voegeli AC, Eyer D, Maitre M (2017) A compound heterozygote case of isolated sulfite oxidase deficiency. Mol Genet Metab Rep 12:99–102.  https://doi.org/10.1016/j.ymgmr.2017.06.009 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cantu D, Fulton RE, Drechsel DA, Patel M (2011) Mitochondrial aconitase knockdown attenuates paraquat-induced dopaminergic cell death via decreased cellular metabolism and release of iron and H(2)O(2). J Neurochem 118:79–92.  https://doi.org/10.1111/j.1471-4159.2011.07290.x CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cardoso GMF, Pletsch JT, Parmeggiani B, Grings M, Glanzel NM, Bobermin LD, Amaral AU, Wajner M, Leipnitz G (2017) Bioenergetics dysfunction, mitochondrial permeability transition pore opening and lipid peroxidation induced by hydrogen sulfide as relevant pathomechanisms underlying the neurological dysfunction characteristic of ethylmalonic encephalopathy. Biochim Biophys Acta 1863:2192–2201.  https://doi.org/10.1016/j.bbadis.2017.06.007 CrossRefGoogle Scholar
  12. Challen RG (1990) Sulphite content of Australian pharmaceutical products. Med J Aust 152:196–198PubMedGoogle Scholar
  13. Chan KY, Li CK, Lai CK, Ng SF, Chan AY (2002) Infantile isolated sulphite oxidase deficiency in a Chinese family: a rare neurodegenerative disorder. Hong Kong Med J 8:279–282PubMedGoogle Scholar
  14. Chapman K (1993) Sulfite-containing pharmaceuticals. Can Med Assoc J 148:714Google Scholar
  15. Chen WWL (1968) A method for the complete sulfonation of cysteine residues in proteins. Biochemistry 7:4247–4254CrossRefGoogle Scholar
  16. Chen LW, Tsai YS, Huang CC (2014) Prenatal multicystic encephalopathy in isolated sulfite oxidase deficiency with a novel mutaion. Pediatr Neurol 51:181–182.  https://doi.org/10.1016/j.pediatrneurol.2014.03.010 CrossRefPubMedGoogle Scholar
  17. Chiarani F, Bavaresco CS, Dutra-Filho CS, Netto CA, Wyse AT (2008) Sulfite increases lipoperoxidation and decreases the activity of catalase in brain of rats. Metab Brain Dis 23:123–132.  https://doi.org/10.1007/s11011-007-9073-2 CrossRefPubMedGoogle Scholar
  18. da Rosa MS, Seminotti B, Ribeiro CA, Parmeggiani B, Grings M, Wajner M, Leipnitz G (2016) 3-Hydroxy-3-methylglutaric and 3-methylglutaric acids impair redox status and energy production and transfer in rat heart: relevance for the pathophysiology of cardiac dysfunction in 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency. Free Radic Res 50:997–1010.  https://doi.org/10.1080/10715762.2016.1214952 CrossRefPubMedGoogle Scholar
  19. De Keyser J, Mostert JP, Koch MW (2008) Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci 267:3–16.  https://doi.org/10.1016/j.jns.2007.08.044 CrossRefPubMedGoogle Scholar
  20. de Moura Alvorcem L, da Rosa MS, Glänzel NM, Parmeggiani B, Grings M, Schmitz F, Wyse ATS, Wajner M, Leipnitz G (2017) Disruption of energy transfer and redox status by sulfite in hippocampus, striatum, and cerebellum of developing rats. Neurotox Res 32:264–275.  https://doi.org/10.1007/s12640-017-9732-y CrossRefPubMedGoogle Scholar
  21. Derin N, Akpinar D, Yargicoglu P, Agar A, Aslan M (2009) Effect of alpha-lipoic acid on visual evoked potentials in rats exposed to sulfite. Neurotoxicol Teratol 31:34–39.  https://doi.org/10.1016/j.ntt.2008.08.002 CrossRefPubMedGoogle Scholar
  22. Djouadi F, Bastin J (2011) Species differences in the effects of bezafibrate as a potential treatment of mitochondrial disorders. Cell Metab 14:715–716; author reply 717.  https://doi.org/10.1016/j.cmet.2011.11.003 CrossRefPubMedGoogle Scholar
  23. Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I (2009) S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta 1793:1008–1022.  https://doi.org/10.1016/j.bbamcr.2008.11.009 CrossRefPubMedGoogle Scholar
  24. Dublin AB, Hald JK, Wootton-Gorges SL (2002) Isolated sulfite oxidase deficiency: MR imaging features. AJNR Am J Neuroradiol 23:484–485PubMedGoogle Scholar
  25. Erecinska M, Silver IA (1994) Ions and energy in mammalian brain. Prog Neurobiol 43:37–71.  https://doi.org/10.1016/0301-0082(94)90015-9 CrossRefPubMedGoogle Scholar
  26. Feng C, Tollin G, Enemark JH (2007) Sulfite oxidizing enzymes. Biochim Biophys Acta 1774:527–539.  https://doi.org/10.1016/j.bbapap.2007.03.006 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93:884S–890S.  https://doi.org/10.3945/ajcn.110.001917 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Finkelstein JD (1990) Methionine metabolism in mammals. J Nutr Biochem 1:228–237.  https://doi.org/10.1016/0955-2863(90)90070-2 CrossRefPubMedGoogle Scholar
  29. Garrett RM, Johnson JL, Graf TN, Feigenbaum A, Rajagopalan KV (1998) Human sulfite oxidase R160Q: identification of the mutation in a sulfite oxidase-deficient patient and expression and characterization of the mutant enzyme. Proc Natl Acad Sci U S A 95:6394–6398.  https://doi.org/10.1073/pnas.95.11.6394 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Grings M, Moura AP, Parmeggiani B, Marcowich GF, Amaral AU, de Souza Wyse AT, Wajner M, Leipnitz G (2013) Disturbance of brain energy and redox homeostasis provoked by sulfite and thiosulfate: potential pathomechanisms involved in the neuropathology of sulfite oxidase deficiency. Gene 531:191–198.  https://doi.org/10.1016/j.gene.2013.09.018 CrossRefPubMedGoogle Scholar
  31. Grings M, Moura AP, Amaral AU, Parmeggiani B, Gasparotto J, Moreira JCF, Gelain DP, Wyse ATS, Wajner M, Leipnitz G (2014) Sulfite disrupts brain mitochondrial energy homeostasis and induces mitochondrial permeability transition pore opening via thiol group modification. Biochim Biophys Acta 1842:1413–1422.  https://doi.org/10.1016/j.bbadis.2014.04.022 CrossRefPubMedGoogle Scholar
  32. Grings M, Moura AP, Parmeggiani B, Motta MM, Boldrini RM, August PM, Matté C, Wyse ATS, Wajner M, Leipnitz G (2016) Higher susceptibility of cerebral cortex and striatum to sulfite neurotoxicity in sulfite oxidase-deficient rats. Biochim Biophys Acta 1862:2063–2074.  https://doi.org/10.1016/j.bbadis.2016.08.007 CrossRefPubMedGoogle Scholar
  33. Grings M, Moura AP, Parmeggiani B, Pletsch JT, Cardoso GMF, August PM, Matté C, Wyse ATS, Wajner M, Leipnitz G (2017) Bezafibrate prevents mitochondrial dysfunction, antioxidant system disturbance, glial reactivity and neuronal damage induced by sulfite administration in striatum of rats: implications for a possible therapeutic strategy for sulfite oxidase deficiency. Biochim Biophys Acta 1863:2135–2148.  https://doi.org/10.1016/j.bbadis.2017.05.019 CrossRefGoogle Scholar
  34. Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322.  https://doi.org/10.1104/pp.106.077073 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Halliwell B, Gutteridge J (2015a) Antioxidant defenses synthesized in vivo. In: B H, JMC G (ed) Free radicals in biology and medicine, 5th ed edn. Oxford University Press Inc., New York, pp 77–151CrossRefGoogle Scholar
  36. Halliwell B, Gutteridge J (2015b) Antioxidants from the diet. In: B H, JMC G (ed) Free radicals in biology and medicine, 5th ed edn. Oxford University Press Inc., New York, pp 153–197CrossRefGoogle Scholar
  37. Halliwell B, Gutteridge J (2015c) Oxidative stress and redox regulation: adaptation, damage, repair, senescence, and death. In: B H, JMC G (ed) Free radicals in biology and medicine, 5th ed edn. Oxford University Press Inc., New York, pp 199–283CrossRefGoogle Scholar
  38. Halliwell B, Gutteridge J (2015d) Oxygen: boon yet bane—introducing oxygen toxicity and reactive species. In: B H, JMC G (ed) Free radicals in biology and medicine, 5th ed edn. Oxford University Press Inc., New York, pp 1–29CrossRefGoogle Scholar
  39. Halliwell B, Gutteridge J (2015e) Reactive species in disease: friends or foes? In: B H, JMC G (ed) Free radicals in biology and medicine, 5th ed edn. Oxford University Press Inc., New York, pp 511–638CrossRefGoogle Scholar
  40. Hayatsu H (1969) The oxygen-catalyzed reaction between 4-thiouridine and sodium sulfite. J Am Chem Soc 91:5693–5694.  https://doi.org/10.1021/ja01048a076 CrossRefPubMedGoogle Scholar
  41. Hayatsu H (1976) Bisulfite modification of nucleic acids and their constituents. Prog Nucleic Acid Res Mol Biol 16:75–124.  https://doi.org/10.1016/S0079-6603(08)60756-4 CrossRefPubMedGoogle Scholar
  42. Hayatsu H, Inoue M (1971) The oxygen-mediated reaction between 4-thiouracil derivatives and bi- sulfite. Isolation and characterization of 1-methyluracil 4-thiosulfate as an intermediate in the formation of 1-methyluracil-4-sulfonate. J Am Chem Soc 93:2301–2306.  https://doi.org/10.1021/ja00738a033 CrossRefPubMedGoogle Scholar
  43. Hayon E, Treinin A, Wilf J (1972) Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. The SO2 - , SO3 - , SO4 - , and SO5 - radicals. J Am Chem Soc 94:47–57.  https://doi.org/10.1021/ja00756a009 CrossRefGoogle Scholar
  44. Herken EN, Kocamaz E, Erel O, Celik H, Kucukatay V (2009) Effect of sulfite treatment on total antioxidant capacity, total oxidant status, lipid hydroperoxide, and total free sulfydryl groups contents in normal and sulfite oxidase-deficient rat plasma. Cell Biol Toxicol 25:355–362.  https://doi.org/10.1007/s10565-008-9089-3 CrossRefPubMedGoogle Scholar
  45. Higuchi R, Sugimoto T, Tamura A, Kioka N, Tsuno Y, Higa A, Yoshikawa N (2014) Early features in neuroimaging of two siblings with molybdenum cofactor deficiency. Pediatrics 133:e267–e271.  https://doi.org/10.1542/peds.2013-0935 CrossRefPubMedGoogle Scholar
  46. Holder JL Jr, Agadi S, Reese W, Rehder C, Quach MM (2014) Infantile spasms and hyperekplexia associated with isolated sulfite oxidase deficiency. JAMA Neurol 71:782–784.  https://doi.org/10.1001/jamaneurol.2013.5083 CrossRefPubMedGoogle Scholar
  47. Hu J, Castets F, Guevara JL, Van Eldik LJ (1996) S100 beta stimulates inducible nitric oxide synthase activity and mRNA levels in rat cortical astrocytes. J Biol Chem 271:2543–2547CrossRefPubMedGoogle Scholar
  48. Huijmans JGM, Schot R, de Klerk JBC, Williams M, de Coo RFM, Duran M, Verheijen FW, van Slegtenhorst M, Mancini GMS (2017) Molybdenum cofactor deficiency: identification of a patient with homozygote mutation in the MOCS3 gene. Am J Med Genet A 173:1601–1606.  https://doi.org/10.1002/ajmg.a.38240 CrossRefPubMedGoogle Scholar
  49. Hurst S, Hoek J, Sheu SS (2017) Mitochondrial Ca(2+) and regulation of the permeability transition pore. J Bioenerg Biomembr 49:27–47.  https://doi.org/10.1007/s10863-016-9672-x CrossRefPubMedGoogle Scholar
  50. Jackson MR, Melideo SL, Jorns MS (2012) Human sulfide:quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite. Biochemistry 51:6804–6815.  https://doi.org/10.1021/bi300778t CrossRefPubMedGoogle Scholar
  51. Ji AJ, Savon SR, Jacobsen DW (1995) Determination of total serum sulfite by HPLC with fluorescence detection. Clin Chem 41:897–903PubMedGoogle Scholar
  52. Johnson JL, Duran M (2001) Molybdenum cofactor deficiency and isolated sulfite oxidase deficiency. In: Scriver CR, Beaudet AL, Valle D, Sly WS (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 3181–3217Google Scholar
  53. Johri A, Calingasan NY, Hennessey TM, Sharma A, Yang L, Wille E, Chandra A, Beal MF (2012) Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease. Hum Mol Genet 21:1124–1137.  https://doi.org/10.1093/hmg/ddr541 CrossRefPubMedGoogle Scholar
  54. Kappler U, Enemark JH (2015) Sulfite-oxidizing enzymes. J Biol Inorg Chem 20:253–264.  https://doi.org/10.1007/s00775-014-1197-3 CrossRefPubMedGoogle Scholar
  55. Kencebay C, Derin N, Ozsoy O, Kipmen-Korgun D, Tanriover G, Ozturk N, Basaranlar G, Yargicoglu-Akkiraz P, Sozen B, Agar A (2013) Merit of quinacrine in the decrease of ingested sulfite-induced toxic action in rat brain. Food Chem Toxicol 52:129–136.  https://doi.org/10.1016/j.fct.2012.11.015 CrossRefPubMedGoogle Scholar
  56. Kolling J, Scherer EBS, Siebert C, Longoni A, Loureiro S, Weis S, Petenuzzo L, Wyse ATS (2016) Severe hyperhomocysteinemia decreases respiratory enzyme and Na(+)-K(+) ATPase activities, and leads to mitochondrial alterations in rat amygdala. Neurotox Res 29:408–418.  https://doi.org/10.1007/s12640-015-9587-z CrossRefPubMedGoogle Scholar
  57. Komen JC, Thorburn DR (2014) Turn up the power—pharmacological activation of mitochondrial biogenesis in mouse models. Br J Pharmacol 171:1818–1836.  https://doi.org/10.1111/bph.12413 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Küçükatay V, Savcioğlu F, Hacioğlu G, Yargiçoğlu P, Ağar A (2005) Effect of sulfite on cognitive function in normal and sulfite oxidase deficient rats. Neurotoxicol Teratol 27:47–54.  https://doi.org/10.1016/j.ntt.2004.10.002 CrossRefPubMedGoogle Scholar
  59. Kucukatay V, Bor-Kucukatay M, Atsak P, Agar A (2007) Effect of ingested sulfite on hippocampus antioxidant enzyme activities in sulfite oxidase competent and deficient rats. Int J Neurosci 117:971–983.  https://doi.org/10.1080/00207450600934085 CrossRefPubMedGoogle Scholar
  60. Leipnitz G, Mohsen AW, Karunanidhi A, Seminotti B, Roginskaya VY, Markantone DM, Grings M, Mihalik SJ, Wipf P, van Houten B, Vockley J (2018) Evaluation of mitochondrial bioenergetics, dynamics, endoplasmic reticulum-mitochondria crosstalk, and reactive oxygen species in fibroblasts from patients with complex I deficiency. Sci Rep 8:1165.  https://doi.org/10.1038/s41598-018-19543-3 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Leopold JA, Loscalzo J (2009) Oxidative risk for atherothrombotic cardiovascular disease. Free Radic Biol Med 47:1673–1706.  https://doi.org/10.1016/j.freeradbiomed.2009.09.009 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Li Z, Okamoto K, Hayashi Y, Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119:873–887.  https://doi.org/10.1016/j.cell.2004.11.003 CrossRefPubMedGoogle Scholar
  63. Lindblom R, Higgins G, Coughlan M, de Haan JB (2015) Targeting mitochondria and reactive oxygen species-driven pathogenesis in diabetic nephropathy. Rev Diabet Stud 12:134–156.  https://doi.org/10.1900/RDS.2015.12.134 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Longoni A, Kolling J, dos Santos TM, dos Santos JP, da Silva JS, Pettenuzzo L, Gonçalves CA, de Assis AM, Quincozes-Santos A, Wyse ATS (2016) 1,25-Dihydroxyvitamin D3 exerts neuroprotective effects in an ex vivo model of mild hyperhomocysteinemia. Int J Dev Neurosci 48:71–79.  https://doi.org/10.1016/j.ijdevneu.2015.11.005 CrossRefPubMedGoogle Scholar
  65. Maurer I, Zierz S, Moller HJ (2000) A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol Aging 21:455–462.  https://doi.org/10.1016/S0197-4580(00)00112-3 CrossRefPubMedGoogle Scholar
  66. Mottley C, Mason RP (1988) Sulfate anion free radical formation by the peroxidation of (bi)sulfite and its reaction with hydroxyl radical scavengers. Arch Biochem Biophys 267:681–689.  https://doi.org/10.1016/0003-9861(88)90077-X CrossRefPubMedGoogle Scholar
  67. Mottley C, Trice TB, Mason RP (1982) Direct detection of the sulfur trioxide radical anion during the horseradish peroxidase-hydrogen peroxide oxidation of sulfite (aqueous sulfur dioxide). Mol Pharmacol 22:732–737PubMedGoogle Scholar
  68. Moura AP, Grings M, dos Santos Parmeggiani B, Marcowich GF, Tonin AM, Viegas CM, Zanatta Â, Ribeiro CAJ, Wajner M, Leipnitz G (2013) Glycine intracerebroventricular administration disrupts mitochondrial energy homeostasis in cerebral cortex and striatum of young rats. Neurotox Res 24:502–511.  https://doi.org/10.1007/s12640-013-9396-1 CrossRefPubMedGoogle Scholar
  69. Moura AP, Parmeggiani B, Grings M, Alvorcem LM, Boldrini RM, Bumbel AP, Motta MM, Seminotti B, Wajner M, Leipnitz G (2016) Intracerebral glycine administration impairs energy and redox homeostasis and induces glial reactivity in cerebral cortex of newborn rats. Mol Neurobiol 53:5864–5875.  https://doi.org/10.1007/s12035-015-9493-7 CrossRefPubMedGoogle Scholar
  70. Mudd SH (1962) Activation of methionine for transmethylation. V. The mechanism of action of the methionine-activating enzyme. J Biol Chem 237:1372–1375PubMedGoogle Scholar
  71. Myers CR, Antholine WE, Myers JM (2010) The pro-oxidant chromium(VI) inhibits mitochondrial complex I, complex II, and aconitase in the bronchial epithelium: EPR markers for Fe-S proteins. Free Radic Biol Med 49:1903–1915.  https://doi.org/10.1016/j.freeradbiomed.2010.09.020 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Neta P, Huie RE (1985) Free-radical chemistry of sulfite. Environ Health Perspect 64:209–217.  https://doi.org/10.1289/ehp.8564209 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80:315–360.  https://doi.org/10.1152/physrev.2000.80.1.315 CrossRefPubMedGoogle Scholar
  74. Niizuma K, Yoshioka H, Chen H, Kim GS, Jung JE, Katsu M, Okami N, Chan PH (2010) Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta 1802:92–99.  https://doi.org/10.1016/j.bbadis.2009.09.002 CrossRefPubMedGoogle Scholar
  75. Niknahad H, O'Brien PJ (2008) Mechanism of sulfite cytotoxicity in isolated rat hepatocytes. Chem Biol Interact 174:147–154.  https://doi.org/10.1016/j.cbi.2008.05.032 CrossRefPubMedGoogle Scholar
  76. Olivera-Bravo S, Fernandez A, Sarlabos MN, Rosillo JC, Casanova G, Jimenez M, Barbeito L (2011) Neonatal astrocyte damage is sufficient to trigger progressive striatal degeneration in a rat model of glutaric acidemia-I. PLoS One 6:e20831.  https://doi.org/10.1371/journal.pone.0020831 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Orrenius S, Gogvadze V, Zhivotovsky B (2015) Calcium and mitochondria in the regulation of cell death. Biochem Biophys Res Commun 460:72–81.  https://doi.org/10.1016/j.bbrc.2015.01.137 CrossRefPubMedGoogle Scholar
  78. Ozsoy O, Aras S, Ozkan A, Parlak H, Aslan M, Yargicoglu P, Agar A (2016) The effect of ingested sulfite on visual evoked potentials, lipid peroxidation, and antioxidant status of brain in normal and sulfite oxidase-deficient aged rats. Toxicol Ind Health 32:1197–1207.  https://doi.org/10.1177/0748233714552688 CrossRefPubMedGoogle Scholar
  79. Ozturk OH, Oktar S, Aydin M, Kucukatay V (2010) Effect of sulfite on antioxidant enzymes and lipid peroxidation in normal and sulfite oxidase-deficient rat erythrocytes. J Physiol Biochem 66:205–212.  https://doi.org/10.1007/s13105-010-0025-7 CrossRefPubMedGoogle Scholar
  80. Parmeggiani B, Moura AP, Grings M, Bumbel AP, de Moura Alvorcem L, Tauana Pletsch J, Fernandes CG, Wyse ATS, Wajner M, Leipnitz G (2015) In vitro evidence that sulfite impairs glutamatergic neurotransmission and inhibits glutathione metabolism-related enzymes in rat cerebral cortex. Int J Dev Neurosci 42:68–75.  https://doi.org/10.1016/j.ijdevneu.2015.03.005 CrossRefPubMedGoogle Scholar
  81. Picard M, Wallace DC, Burelle Y (2016) The rise of mitochondria in medicine. Mitochondrion 30:105–116.  https://doi.org/10.1016/j.mito.2016.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Pieczenik SR, Neustadt J (2007) Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol 83:84–92.  https://doi.org/10.1016/j.yexmp.2006.09.008 CrossRefPubMedGoogle Scholar
  83. Ponath G, Schettler C, Kaestner F, Voigt B, Wentker D, Arolt V, Rothermundt M (2007) Autocrine S100B effects on astrocytes are mediated via RAGE. J Neuroimmunol 184:214–222.  https://doi.org/10.1016/j.jneuroim.2006.12.011 CrossRefPubMedGoogle Scholar
  84. Pundir CS, Rawal R (2013) Determination of sulfite with emphasis on biosensing methods: a review. Anal Bioanal Chem 405:3049–3062.  https://doi.org/10.1007/s00216-013-6753-0 CrossRefPubMedGoogle Scholar
  85. Rabinovitch RC, Samborska B, Faubert B, Ma EH, Gravel SP, Andrzejewski S, Raissi TC, Pause A, St.-Pierre J, Jones RG (2017) AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species. Cell Rep 21:1–9.  https://doi.org/10.1016/j.celrep.2017.09.026 CrossRefPubMedGoogle Scholar
  86. Reiss J, Hahnewald R (2011) Molybdenum cofactor deficiency: mutations in GPHN, MOCS1, and MOCS2. Hum Mutat 32:10–18.  https://doi.org/10.1002/humu.21390 CrossRefPubMedGoogle Scholar
  87. Reiss J, Johnson JL (2003) Mutations in the molybdenum cofactor biosynthetic genes MOCS1, MOCS2, and GEPH. Hum Mutat 21:569–576.  https://doi.org/10.1002/humu.10223 CrossRefPubMedGoogle Scholar
  88. Robinson HC, Pasternak CA (1964) The isolation of S-sulphoglutathione from the small intestine of the rat. Biochem J 93:487–492.  https://doi.org/10.1042/bj0930487 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Rocha S, Ferreira AC, Dias AI, Vieira JP, Sequeira S (2013) Sulfite oxidase deficiency—an unusual late and mild presentation. Brain Dev 36:176–179.  https://doi.org/10.1016/j.braindev.2013.01.013 CrossRefPubMedGoogle Scholar
  90. Rupar CA, Gillett J, Gordon B, Ramsay D, Johnson J, Garrett R, Rajagopalan K, Jung J, Bacheyie G, Sellers A (1996) Isolated sulfite oxidase deficiency. Neuropediatrics 27:299–304.  https://doi.org/10.1055/s-2007-973798 CrossRefPubMedGoogle Scholar
  91. Sass JO, Gunduz A, Araujo Rodrigues Funayama C, Korkmaz B, Dantas Pinto KG, Tuysuz B, Yanasse Dos Santos L, Taskiran E, de Fátima Turcato M, Lam CW, Reiss J, Walter M, Yalcinkaya C, Camelo Junior JS (2010) Functional deficiencies of sulfite oxidase: differential diagnoses in neonates presenting with intractable seizures and cystic encephalomalacia. Brain and Development 32:544–549.  https://doi.org/10.1016/j.braindev.2009.09.005 CrossRefPubMedGoogle Scholar
  92. Schwahn BC, van Spronsen FJ, Belaidi AA, Bowhay S, Christodoulou J, Derks TG, Hennermann JB, Jameson E, König K, McGregor TL, Font-Montgomery E, Santamaria-Araujo JA, Santra S, Vaidya M, Vierzig A, Wassmer E, Weis I, Wong FY, Veldman A, Schwarz G (2015) Efficacy and safety of cyclic pyranopterin monophosphate substitution in severe molybdenum cofactor deficiency type A: a prospective cohort study. Lancet 386:1955–1963.  https://doi.org/10.1016/S0140-6736(15)00124-5 CrossRefPubMedGoogle Scholar
  93. Schwarz G (2005) Molybdenum cofactor biosynthesis and deficiency. Cell Mol Life Sci 62:2792–2810.  https://doi.org/10.1007/s00018-005-5269-y CrossRefPubMedGoogle Scholar
  94. Schwarz G (2016) Molybdenum cofactor and human disease. Curr Opin Chem Biol 31:179–187.  https://doi.org/10.1016/j.cbpa.2016.03.016 CrossRefPubMedGoogle Scholar
  95. Schwarz G, Mendel RR, Ribbe MW (2009) Molybdenum cofactors, enzymes and pathways. Nature 460:839–847.  https://doi.org/10.1038/nature08302 CrossRefPubMedGoogle Scholar
  96. Schweinberger BM, Wyse AT (2016) Mechanistic basis of hypermethioninemia. Amino Acids 48:2479–2489.  https://doi.org/10.1007/s00726-016-2302-4 CrossRefPubMedGoogle Scholar
  97. Siebert C, Kolling J, Scherer EBS, Schmitz F, da Cunha MJ, Mackedanz V, de Andrade RB, Wannmacher CMD, Wyse ATS (2014) Effect of physical exercise on changes in activities of creatine kinase, cytochrome c oxidase and ATP levels caused by ovariectomy. Metab Brain Dis 29:825–835.  https://doi.org/10.1007/s11011-014-9564-x CrossRefPubMedGoogle Scholar
  98. Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748.  https://doi.org/10.1146/annurev-biochem-061516-045037 CrossRefPubMedGoogle Scholar
  99. Tan WH, Eichler FS, Hoda S, Lee MS, Baris H, Hanley CA, Grant PE, Krishnamoorthy KS, Shih VE (2005) Isolated sulfite oxidase deficiency: a case report with a novel mutation and review of the literature. Pediatrics 116:757–766.  https://doi.org/10.1542/peds.2004-1897 CrossRefPubMedGoogle Scholar
  100. Taylor SL, Higley NA, Bush RK (1986) Sulfites in foods: uses, analytical methods, residues, fate, exposure assessment, metabolism, toxicity, and hypersensitivity. Adv Food Res 30:1–76.  https://doi.org/10.1016/S0065-2628(08)60347-X CrossRefPubMedGoogle Scholar
  101. Touati G, Rusthoven E, Depondt E, Dorche C, Duran M, Heron B, Rabier D, Russo M, Saudubray JM (2000) Dietary therapy in two patients with a mild form of sulphite oxidase deficiency. Evidence for clinical and biological improvement. J Inherit Metab Dis 23:45–53.  https://doi.org/10.1023/A:1005646813492 CrossRefPubMedGoogle Scholar
  102. Vally H, Misso NL, Madan V (2009) Clinical effects of sulphite additives. Clin Exp Allergy 39:1643–1651.  https://doi.org/10.1111/j.1365-2222.2009.03362.x CrossRefPubMedGoogle Scholar
  103. Velayutham M, Hemann CF, Cardounel AJ, Zweier JL (2016) Sulfite oxidase activity of cytochrome c: role of hydrogen peroxide. Biochem Biophys Rep 5:96–104.  https://doi.org/10.1016/j.bbrep.2015.11.025 CrossRefPubMedGoogle Scholar
  104. Veldman A, Santamaria-Araujo JA, Sollazzo S, Pitt J, Gianello R, Yaplito-Lee J, Wong F, Ramsden CA, Reiss J, Cook I, Fairweather J, Schwarz G (2010) Successful treatment of molybdenum cofactor deficiency type A with cPMP. Pediatrics 125:e1249–e1254.  https://doi.org/10.1542/peds.2009-2192 CrossRefPubMedGoogle Scholar
  105. Ventura-Clapier R, Garnier A, Veksler V (2008) Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res 79:208–217.  https://doi.org/10.1093/cvr/cvn098 CrossRefPubMedGoogle Scholar
  106. Vijayakumar K, Gunny R, Grunewald S, Carr L, Chong KW, DeVile C, Robinson R, McSweeney N, Prabhakar P (2011) Clinical neuroimaging features and outcome in molybdenum cofactor deficiency. Pediatr Neurol 45:246–252.  https://doi.org/10.1016/j.pediatrneurol.2011.06.006 CrossRefPubMedGoogle Scholar
  107. Villena JA (2015) New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J 282:647–672.  https://doi.org/10.1111/febs.13175 CrossRefPubMedGoogle Scholar
  108. Vincent AS, Lim BG, Tan J, Whiteman M, Cheung NS, Halliwell B, Wong KP (2004) Sulfite-mediated oxidative stress in kidney cells. Kidney Int 65:393–402.  https://doi.org/10.1111/j.1523-1755.2004.00391.x CrossRefPubMedGoogle Scholar
  109. Wajner M, Latini A, Wyse AT, Dutra-Filho CS (2004) The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis 27:427–448.  https://doi.org/10.1023/B:BOLI.0000037353.13085.e2 CrossRefPubMedGoogle Scholar
  110. Waldbaum S, Patel M (2010) Mitochondrial dysfunction and oxidative stress: a contributing link to acquired epilepsy? J Bioenerg Biomembr 42:449–455.  https://doi.org/10.1007/s10863-010-9320-9 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Wang X, Cao H, Guan XL, Long LH, Hu ZL, Ni L, Wang F, Chen JG, Wu PF (2016) Sulfite triggers sustained calcium overload in cultured cortical neurons via a redox-dependent mechanism. Toxicol Lett 258:237–248.  https://doi.org/10.1016/j.toxlet.2016.06.009 CrossRefPubMedGoogle Scholar
  112. Wyse AT, Netto CA (2011) Behavioral and neurochemical effects of proline. Metab Brain Dis 26:159–172.  https://doi.org/10.1007/s11011-011-9246-x CrossRefPubMedGoogle Scholar
  113. Yang SF (1970) Sulfoxide formation from methionine or its sulfide analogs during aerobic oxidation of sulfite. Biochemistry 9:5008–5014.  https://doi.org/10.1021/bi00827a027 CrossRefPubMedGoogle Scholar
  114. Yang SF (1973) Destruction of tryptophan during the aerobic oxidation of sulfite ions. Environ Res 6:395–402.  https://doi.org/10.1016/0013-9351(73)90055-8 CrossRefPubMedGoogle Scholar
  115. Yargicoglu P, Agar A, Gumuslu S, Bilmen S, Oguz Y (1999) Age-related alterations in antioxidant enzymes, lipid peroxide levels, and somatosensory-evoked potentials: effect of sulfur dioxide. Arch Environ Contam Toxicol 37:554–560CrossRefPubMedGoogle Scholar
  116. Zaki MS, Selim L, el-Bassyouni HT, Issa MY, Mahmoud I, Ismail S, Girgis M, Sadek AA, Gleeson JG, Abdel Hamid MS (2016) Molybdenum cofactor and isolated sulphite oxidase deficiencies: clinical and molecular spectrum among Egyptian patients. Eur J Paediatr Neurol 20:714–722.  https://doi.org/10.1016/j.ejpn.2016.05.011 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Zaleska MM, Floyd RA (1985) Regional lipid peroxidation in rat brain in vitro: possible role of endogenous iron. Neurochem Res 10:397–410.  https://doi.org/10.1007/BF00964608 CrossRefPubMedGoogle Scholar
  118. Zhang X, Vincent AS, Halliwell B, Wong KP (2004) A mechanism of sulfite neurotoxicity: direct inhibition of glutamate dehydrogenase. J Biol Chem 279:43035–43045.  https://doi.org/10.1074/jbc.M402759200 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Angela T. S. Wyse
    • 1
  • Mateus Grings
    • 1
  • Moacir Wajner
    • 1
  • Guilhian Leipnitz
    • 1
  1. 1.Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBSUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations