Advertisement

Fungal Neurotoxins and Sporadic Amyotrophic Lateral Sclerosis

  • Peter W. French
  • Russell Ludowyke
  • Gilles J. Guillemin
REVIEW

Abstract

We review several lines of evidence that point to a potential fungal origin of sporadic amyotrophic lateral sclerosis (ALS). ALS is the most common form of motor neuron disease (MND) in adults. It is a progressive and fatal disease. Approximately 90% cases of ALS are sporadic, and 5–10% are due to genetic mutations (familial). About 25 genes implicated in familial ALS have been identified so far, including SOD1 and TARDBP, the gene encoding 43 kDa transactive response (TAR) DNA-binding protein (TDP-43). Despite intensive research over many decades, the aetiology of sporadic ALS is still unknown. An environmental cause, including grass or soil-associated fungal infections, is suggested from a range of widely diverse lines of evidence. Clusters of ALS have been reported in soccer players, natives of Guam and farmers. Grass-associated fungi are known to produce a range of neurotoxins and, in symbiotic associations, high levels of fungal SOD1. Exposure of neurons to fungal neurotoxins elicits a significant increase in glutamate production. High levels of glutamate stimulate TDP-43 translocation and modification, providing a link between fungal infection and one of the molecular and histologic hallmarks of sporadic ALS. A recent study provided evidence of a variety of fungi in the cerebrospinal fluid and brain tissue of ALS patients. This review provides a rational explanation for this observation. If a fungal infection could be confirmed as a potential cause of ALS, this could provide a straightforward treatment strategy for this fatal and incurable disease.

Keywords

Motor neuron disease Amyotrophic lateral sclerosis Mycotoxin Fungi Sporadic ALS 

Notes

References

  1. Al-Chalabi A, Jones A, Troakes C, King A, Al-Sarraj S et al (2012) The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol 124:339–352CrossRefPubMedGoogle Scholar
  2. Alfahad T, Nath A (2013) Retroviruses and amyotrophic lateral sclerosis. Antivir Res 99(2):180–187CrossRefPubMedGoogle Scholar
  3. Alonso R, Pisa D, Fernández-Fernández AM, Rábano A, Carrasco L (2017) Fungal infection in neural tissue of patients with amyotrophic lateral sclerosis. Neurobiol Dis 108:249–260CrossRefPubMedGoogle Scholar
  4. Alonso R, Pisa D, Marina AI, Morato E, Rábano A, Rodal I, Carrasco L (2015) Evidence for fungal infection in cerebrospinal fluid and brain tissue from patients with amyotrophic lateral sclerosis. Int J Biol Sci 11:546–558CrossRefPubMedPubMedCentralGoogle Scholar
  5. Alshannaq A, Yu J-H (2017) Occurrence, toxicity, and analysis of major mycotoxins in food. Int J Environ Res Public Health 4(6):632–652CrossRefGoogle Scholar
  6. Andersen PM, Al-Chalabi A (2011) Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 7:603–615CrossRefGoogle Scholar
  7. Bassini A, Cameron LC (2014) Sportomics: building a new concept in metabolic studies and exercise science. Biochem Biophys Res Commun 445:708–716CrossRefPubMedGoogle Scholar
  8. Bhandari R, Kuhad A, Kuhad A (2018) Edaravone: a new hope for deadly amyotrophic lateral sclerosis. Drugs Today (Barc) 54(6):349–360CrossRefGoogle Scholar
  9. Bozzoni V, Pansarasa O, Diamanti L, Nosari G, Cereda C et al (2016) Amyotrophic lateral sclerosis and environmental factors. Funct Neurol 31(1):7–19PubMedPubMedCentralGoogle Scholar
  10. Bradford HF, Norris PJ, Smith CC (1990) Changes in transmitter release patterns in vitro induced by tremorgenic mycotoxins. J Environ Pathol Toxicol Oncol 10(1–2):17–30PubMedGoogle Scholar
  11. Bradley WG, Stommel EW, Shi X, Torbick NM, Caller TA et al (2015) Spatial cluster analysis of population amyotrophic lateral sclerosis risk in Ireland. Neurology 85(20):1822–1823CrossRefPubMedGoogle Scholar
  12. Carroll MC, Girouard JB, Ulloa JL, Subramaniam JR, Wong PC, Valentine JS, Culotta VC (2004) Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone. Proc Natl Acad Sci U S A 101:5964–5969CrossRefPubMedPubMedCentralGoogle Scholar
  13. Castanedo-Vazquez D, Bosque-Varela P, Sainz-Pelayo A, Riancho J (2018) Infectious agents and amyotrophic lateral sclerosis: another piece of the puzzle of motor neuron degeneration. J Neurol.  https://doi.org/10.1007/s00415-018-8919-3
  14. Cellura E (2011) Extramotor disorders in amyotrophic lateral sclerosis: multisystem disease? Clin Ter 162:457–459PubMedGoogle Scholar
  15. Cheah BC, Vucic S, Krishnan AV, Kiernan MC (2010) Riluzole, neuroprotection and amyotrophic lateral sclerosis. Curr Med Chem 17:1942–1959CrossRefPubMedGoogle Scholar
  16. Chiò A, Benzi G, Dossena M, Mutani R, Mora G (2005) Severely increased risk of amyotrophic lateral sclerosis among Italian professional football players. Brain 128:472–476CrossRefPubMedGoogle Scholar
  17. Chiò A, Calvo A, Dossena M, Ghiglione P, Mutani R, Mora G (2009) ALS in Italian professional soccer players: the risk is still present and could be soccer-specific. Amyotroph Lateral Scler 10:205–209CrossRefGoogle Scholar
  18. Chió A, Meineri P, Tribolo A, Schiffer D (1991) Risk factors in motor neuron disease: a case-control study. Neuroepidemiol 10:174–184CrossRefGoogle Scholar
  19. Cole RJ (1981) Fungal tremorgens. J Food Protection 44:715–722CrossRefGoogle Scholar
  20. Cox GM, Harrison TS, McDade HC, Taborda CP, Heinrich G et al (2003b) Superoxide dismutase influences the virulence of Cryptococcus neoformans by affecting growth within macrophages. Infect Immun 71(1):173–180CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cox PA, Banack SA, Murch SJ (2003a) Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam. Natl Acad Sci USA 100(23):13380–13383CrossRefGoogle Scholar
  22. Cox PA, Kostrzewa RM, Guillemin GJ (2018) BMAA and neurodegenerative illness. Neurotox Res 33(1):178–183CrossRefPubMedGoogle Scholar
  23. di Menna ME, Finch SC, Popay J, Smith BL (2012) A review of the Neotyphodium lolii / Lolium perenne symbiosis and its associated effects on animal and plant health, with particular emphasis on ryegrass staggers. NZ Vet J 60(6):315–328CrossRefGoogle Scholar
  24. Doble A (1996) The pharmacology and mechanism of action of riluzole. Neurology 47(6 Suppl 4):S233–S241CrossRefPubMedGoogle Scholar
  25. Douville R, Liu J, Rothstein J, Nath A (2011) Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis. Ann Neurol 69(1):141–151CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dupuis L, Pradat PF, Ludolph AC, Loeffler JP (2011) Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol 10:75–82CrossRefPubMedGoogle Scholar
  27. el Khoury A, Atoui A (2010) Ochratoxin A: general overview and actual molecular status. Toxins 2:461–493CrossRefPubMedPubMedCentralGoogle Scholar
  28. Fang F, Hallmarker U, James S, Ingre C, Michaelsson K et al (2015) Amyotrophic lateral sclerosis among cross-country skiers in Sweden. Eur J Epidemiol 31:247–253.  https://doi.org/10.1007/s10654-015-0077-7 CrossRefPubMedGoogle Scholar
  29. Furby A, Beauvais K, Kolev I, Rivain JG, Sébille V (2010) Rural environment and risk factors of amyotrophic lateral sclerosis: a case-control study. J Neurol 257:792–798CrossRefPubMedGoogle Scholar
  30. Gallagher RT, Keogh RG, Latch GCM, Reid CSW (1977) The role of fungal tremorgens in ryegrass staggers. NZ J Agr 20:431–440CrossRefGoogle Scholar
  31. Gallo V, Vanacore N, Bueno-de-Mesquita HB (2016) Physical activity and risk of amyotrophic lateral sclerosis in a prospective cohort study. Eur J Epidemiol 31(3):255–266CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gitler AD, Tsuiji H (2016) There has been an awakening: emerging mechanisms of C9orf72 mutations in FTD/ALS. Brain Res 1647:19–29CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gordon PH (2013) Amyotrophic lateral sclerosis: an update for 2013 clinical features, pathophysiology, management and therapeutic trials. Aging Dis 4:295–310CrossRefPubMedPubMedCentralGoogle Scholar
  34. Haley RW (2003) Excess incidence of ALS in young Gulf War veterans. Neurology 61(6):750–756CrossRefPubMedGoogle Scholar
  35. Haque AK (1992) Pathology of common pulmonary fungal infections. J Thorac Imaging 7(4):1–11CrossRefPubMedGoogle Scholar
  36. Hochberg FH, Bryan JA 2nd, Whelan MA (1974) Clustering of amyotrophic lateral sclerosis. Lancet 1(7845):34CrossRefPubMedGoogle Scholar
  37. Howard R, Orrell R (2002) Management of motor neurone disease. Postgrad Med J 78(926):736–741CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ince PG, Codd GA (2005) Return of the cycad hypothesis—does the amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC) of Guam have new implications for global health? Neuropathol Appl Neurobiol 31(4):345–353CrossRefPubMedGoogle Scholar
  39. Ingre C, Roos PM, Piehl F, Kamel F, Fang F (2015) Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol 7:181–193PubMedPubMedCentralGoogle Scholar
  40. Kang H, Cha ES, Choi GJ, Lee WJ (2014) Amyotrophic lateral sclerosis and agricultural environments: a systematic review. J Korean Med Sci 29:1610–1617CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kilness AW, Hochberg FH (1977) Amyotrophic lateral sclerosis in a high selenium environment. JAMA 237(26):2843–2844CrossRefPubMedGoogle Scholar
  42. King OD, Gitler AD, Shorter J (2012) The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res 1462:61–80CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kisby GE, Spencer PS (2011) Is neurodegenerative disease a long-latency response to early-life genotoxin exposure? Int J Environ Res Public Health 8(10):3889–3921CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kurland LT (1988) Amyotrophic lateral sclerosis and Parkinson’s disease complex on Guam linked to an environmental neurotoxin. Trends Neurosci 11:51–54CrossRefPubMedGoogle Scholar
  45. LaFleur MD, Lucumi E, Napper AD, Diamond SL, Lewis K (2011) Novel high-throughput screen against Candida albicans identifies antifungal potentiators and agents effective against biofilms. J Antimicrob Chemother 66:820–826CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lahiani A, Yavin E, Lazarovici P (2017) The molecular basis of toxins’ interactions with intracellular signaling via discrete portals. Toxins 9:107–165CrossRefPubMedCentralGoogle Scholar
  47. Lasiene J, Yamanaka K (2011) Glial cells in amyotrophic lateral sclerosis. Neurol Res Int 2011:1–7.  https://doi.org/10.1155/2011/718987 CrossRefGoogle Scholar
  48. Mackenzie IRA, Rademakers R (2008) The role of TDP-43 in amyotrophic lateral sclerosis and frontotemporal dementia. Curr Opin Neurol 21(6):693–700CrossRefPubMedPubMedCentralGoogle Scholar
  49. Malaspina A, Alimonti D, Poloni TE, Ceroni M (2002) Disease clustering: the example of ALS, PD, dementia and hereditary ataxias in Italy. Funct Neurol 17(4):177–182PubMedGoogle Scholar
  50. Mantle PG, Mortimer PH, White EP (1977) Mycotoxic tremorgens of Claviceps pascali and Penicillium cyclopium: a comparative study of effects of sheep and cattle in relation to natural staggers syndromes. Res Vet Sci 24:49–56CrossRefGoogle Scholar
  51. Masseret E, Banack S, Boumédiène F, Abadie E, Brient L, Pernet F, Juntas-Morales R, Pageot N, Metcalf J, Cox P, Camu W, Guillemin GJ (2013) Dietary BMAA Exposure in an Amyotrophic Lateral Sclerosis Cluster from Southern France. PLoS ONE 8(12):e83406.  https://doi.org/10.1371/journal.pone.0083406 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Mathis S, Couratier P, Julian A, Corcia P, Le Masson G (2017) Current view and perspectives in amyotrophic lateral sclerosis. Neural Regen Res 12(2):181–184CrossRefPubMedPubMedCentralGoogle Scholar
  53. Melmed C, Krieger C (1982) A cluster of amyotrophic lateral sclerosis. Arch Neurol 39(9):595–596CrossRefPubMedGoogle Scholar
  54. Mochizuki Y, Isozaki E, Takao M, Hashimoto T, Shibuya M, Arai M, Hosokawa M, Kawata A, Oyanagi K, Mihara B, Mizutani T (2012) Familial ALS with FUS P525L mutation: two Japanese sisters with multiple systems involvement. J Neurol Sci 323:85–92CrossRefPubMedGoogle Scholar
  55. Neumann M, Sampathu DM, Kwong LK, Trojanowski JQ, Lee VM (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133CrossRefGoogle Scholar
  56. Nicoletti A, Bruno E, Nania M, Cicero E, Messina S, Chisari C, Torrisi J, Maimone D, Marziolo R, Lo Fermo S, Patti F, Giammanco S, Zappia M (2013) Multiple sclerosis in the Mount Etna region: possible role of volcanogenic trace elements. PLoS One 8(12):e74259.  https://doi.org/10.1371/journal.pone.0074259 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Nicoletti A, Vasta R, Venti V, Mostile G, Lo Fermo S, Patti F, Scillieri R, de Cicco D, Volanti P, Marziolo R, Maimone D, Fiore M, Ferrante M, Zappia M (2016) The epidemiology of amyotrophic lateral sclerosis in the Mount Etna region: a possible pathogenic role of volcanogenic metals. Eur J Neurol 23(5):964–972CrossRefPubMedGoogle Scholar
  58. Norris PJ, Smith CCT, De Belleroche J, Bradford HF, Mantle PG et al (1980) Actions of tremorgenic fungal toxins on neurotransmitter release. J Neurochem 34(1):33–42CrossRefPubMedGoogle Scholar
  59. Oskarsson B, Horton DK, Mitsumoto H (2015) Potential environmental factors in amyotrophic lateral sclerosis. Neurol Clin 33(4):877–888CrossRefPubMedPubMedCentralGoogle Scholar
  60. Passler T, Walz PH, Pugh DG (2012) Diseases of the neurologic system. In Pugh DG, Baird AN (eds) Sheep and goat medicine, 2nd edn. Saunders, Maryland Heights, MO, pp 361–405CrossRefGoogle Scholar
  61. Peterson DW, Bradford HF, Mantle PG (1982a) Actions of a tremorgenic mycotoxin on amino acid transmitter release in vivo. Biochem Pharmacol 31:2807–2810CrossRefPubMedGoogle Scholar
  62. Peterson DW, Penny RHC, Day JB, Mantle PG (1982b) A comparative study of sheep and pigs given the tremorgenic mycotoxins verruculogen and Penitrem A. Res Vet Sci 33(2):183–187CrossRefPubMedGoogle Scholar
  63. Plumlee KH, Galey FD (1994) Neurotoxic mycotoxins: a review of fungal toxins that cause neurological disease in large animals. J Vet Intern Med 8:49–54CrossRefPubMedGoogle Scholar
  64. Pokrishevsky E, Grad LI, Cashman NR (2016) TDP-43 or FUS-induced misfolded human wild-type SOD1 can propagate intercellularly in a prion-like fashion. Sci Rep 6:22155CrossRefPubMedPubMedCentralGoogle Scholar
  65. Ravits JM, La Spada AR (2009) Deconstructing motor neuron degeneration. Neurology 73(10):805–811CrossRefPubMedPubMedCentralGoogle Scholar
  66. Riancho J, Bosque-Varela P, Perez-Pereda S, Povedano M, de Munaín AL, Santurtun A (2018) The increasing importance of environmental conditions in amyotrophic lateral sclerosis. Int J Biometeorol 62(8):1361–1374CrossRefPubMedGoogle Scholar
  67. Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-Linked ALS-FTD. Neuron 72:257–268CrossRefPubMedPubMedCentralGoogle Scholar
  68. Rooney J, Heverin M, Vajda A, Elamin M, Crampsie A et al (2015) Spatial cluster analysis of population amyotrophic lateral sclerosis risk in Ireland. Neurology 84:1537–1544CrossRefPubMedGoogle Scholar
  69. Rosati G, Pinna L, Granieri E, Aiello I, Tola R, Agnetti V, Pirisi A, Bastiani P (1977) Studies on epidemiological, clinical and etiological aspects of ALS disease in Sardinia, Southern Italy. Acta Neurol Scand 55(3):231–244CrossRefPubMedGoogle Scholar
  70. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX, Rahmani Z, Krizus A, McKenna-Yasek D, Cayabyab A, Gaston SM, Berger R, Tanzi RE, Halperin JJ, Herzfeldt B, van den Bergh R, Hung WY, Bird T, Deng G, Mulder DW, Smyth C, Laing NG, Soriano E, Pericak–Vance MA, Haines J, Rouleau GA, Gusella JS, Horvitz HR, Brown RH (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62CrossRefGoogle Scholar
  71. Roy J, Minotti S, Dong L, Figlewicz DA, Durham HD (1998) Glutamate potentiates the toxicity of mutant Cu/Zn-superoxide dismutase in motor neurons by postsynaptic calcium-dependent mechanisms. J Neurosci 18:9673–9684CrossRefPubMedGoogle Scholar
  72. Sabel CE, Boyle PJ, Löytönen M, Gatrell AC, Jokelainen M et al (2003) Spatial clustering of amyotrophic lateral sclerosis in Finland at place of birth and place of death. Am J Epidemiol 157(10):898–905CrossRefPubMedGoogle Scholar
  73. Sava V, Reunova O, Velasquez A, Sanchez-Ramos J (2006) Can low level exposure to ochratoxin-A cause parkinsonism? J Neurol Sci 249(1):68–75CrossRefPubMedGoogle Scholar
  74. Scofield M, Korutla L, Jackson TG, Kalivas PW, Mackler SA (2012) Nucleus Accumbens 1, a Pox virus and Zinc finger/Bric-a-brac Tramtrack Broad protein binds to TAR DNA-binding protein 43 and has a potential role in amyotrophic lateral sclerosis. Neurosci 227:44–54CrossRefGoogle Scholar
  75. Selala MI, Daelemans F, Schepens PJ (1989) Fungal tremorgens: the mechanism of action of single nitrogen containing toxins—a hypothesis. Drug Chem Toxicol 12(3–4):237–257CrossRefPubMedGoogle Scholar
  76. Sheng Y, Chattopadhyay M, Whitelegge J, Valentine JS (2012) SOD1 aggregation and ALS: role of metallation states and disulfide status. Curr Top Med Chem 12(22):2560–2572CrossRefPubMedGoogle Scholar
  77. Sobotka TJ, Brodie RE, Spaid SL (1978) Neurobehavioral studies of tremorgenic mycotoxins verruculogen and penitrem A. Pharmacol 16(5):287–294CrossRefGoogle Scholar
  78. Spencer PS (1987) Guam ALS/parkinsonism-dementia: a long-latency neurotoxic disorder caused by “slow toxin(s)” in food? Canad J Neurol Sci 14(S3):347–357CrossRefPubMedGoogle Scholar
  79. Steele JC (2005) Parkinsonism-dementia complex of Guam. Mov Disord 20(Suppl 12):S99–S107CrossRefPubMedGoogle Scholar
  80. Steele JC, McGeer PL (2008) The ALS/PDC syndrome of Guam and the cycad hypothesis. Neurology 70(21):1984–1990CrossRefPubMedGoogle Scholar
  81. Stein PS (1995) Mycotoxins, general view, chemistry and structure. Toxicol Lett 82-83:843–851CrossRefGoogle Scholar
  82. Straub RH, Schradin C (2016) Chronic inflammatory systemic diseases: an evolutionary trade-off between acutely beneficial but chronically harmful programs. Evol Med Public Health 2016(1):37–51Google Scholar
  83. Su FC, Goutman SA, Chernyak S, Mukherjee B, Callaghan BC, Batterman S, Feldman EL (2016) Association of environmental toxins with amyotrophic lateral sclerosis. JAMA Neurol 73(7):803–811CrossRefPubMedPubMedCentralGoogle Scholar
  84. Sweeney MJ, Dobson DW (1998) Mycotoxin production by Aspergillus, Fusarium and Penicillium species. Int J Food Microbiol 43:141–158CrossRefPubMedGoogle Scholar
  85. Tesauro M, Consonni M, Filippini T, Mazzini L, Pisano F et al (2017) Incidence of amyotrophic lateral sclerosis in the province of Novara, Italy, and possible role of environmental pollution. Amyotroph Lateral Scler Frontotemporal Degener 2:1–7Google Scholar
  86. Torbick N, Hession S, Stommel E, Caller T (2014) Mapping amyotrophic lateral sclerosis lake risk factors across northern New England. Int J Health Geogr 13(1):1CrossRefPubMedPubMedCentralGoogle Scholar
  87. Torbick N, Ziniti B, Stommel E, Linder E, Andrew A, Caller T, Haney J, Bradley W, Henegan PL, Shi X (2018) Assessing cyanobacterial harmful algal blooms as risk factors for amyotrophic lateral sclerosis. Neurotox Res 33(1):199–212CrossRefPubMedGoogle Scholar
  88. Uccelli R, Binazzi A, Altavista P, Belli S, Comba P, Mastrantonio M, Vanacore N (2007) Geographic distribution of amyotrophic lateral sclerosis through motor neuron disease mortality data. Eur J Epidemiol 22(11):781–790CrossRefPubMedGoogle Scholar
  89. van der Graaff MM, de Jong JM, Baas F, de Visser M (2009) Upper motor neuron and extra-motor neuron involvement in amyotrophic lateral sclerosis: a clinical and brain imaging review. Neuromuscul Disord 19:53–58CrossRefPubMedGoogle Scholar
  90. Vandoorne T, De Bock K, Van Den Bosch L (2018) Energy metabolism in ALS: an underappreciated opportunity? Acta Neuropathol 135(4):489–509CrossRefPubMedPubMedCentralGoogle Scholar
  91. Vinceti M, Bonvicini F, Rothman KJ, Vescovi L, Wang F (2010) The relation between amyotrophic lateral sclerosis and inorganic selenium in drinking water: a population-based case-control study. Environ Health 9:77–84CrossRefPubMedPubMedCentralGoogle Scholar
  92. Wicks P, Ganesalingham J, Collin C, Prevett M, Leigh NP, al-Chalabi A (2007) Three soccer playing friends with simultaneous amyotrophic lateral sclerosis. Amyotroph Lateral Scler 8:177–179CrossRefPubMedGoogle Scholar
  93. Zhang N, Zhang S, Borchert S, Richardson K, Schmid J (2011) High levels of a fungal superoxide dismutase and increased concentration of a PR-10 plant protein in associations between the endophytic fungus Neotyphodium lolii and ryegrass. Mol Plant-Microbe Interact 24(8):984–992CrossRefPubMedGoogle Scholar
  94. Zufiría M, Gil-Bea FJ, Fernández-Torrón R, Poza JJ, Muñoz-Blanco JL, Rojas-García R, Riancho J, López de Munain A (2016) ALS: a bucket of genes, environment, metabolism and unknown ingredients. Prog Neurobiol 142:104–129CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MedicineUniversity of New South WalesSydneyAustralia
  2. 2.WilloughbySydneyAustralia
  3. 3.Neuroinflammation Group, Department of Biological Sciences, Faculty of Medicine and Health SciencesMacquarie UniversitySydneyAustralia

Personalised recommendations