Neurotoxicity Research

, Volume 35, Issue 2, pp 410–420 | Cite as

Mild Exercise Differently Affects Proteostasis and Oxidative Stress on Motor Areas During Neurodegeneration: A Comparative Study of Three Treadmill Running Protocols

  • Karla P. Melo
  • Carolliny M. Silva
  • Michael F. Almeida
  • Rodrigo S. Chaves
  • Tania Marcourakis
  • Sandra M. Cardoso
  • Marilene Demasi
  • Luis E. S. Netto
  • Merari F. R. FerrariEmail author


Proteostasis and oxidative stress were evaluated in motor cortex and spinal cord of aged Lewis rats exposed to 1 mg/kg/day of rotenone during 4 or 8 weeks, prior or after practicing three protocols of mild treadmill running. Results demonstrated that exercise done after the beginning of neurodegeneration reverted the increased oxidative stress (measured by H2O2 levels and SOD activity), increased neuron strength, and improved proteostasis in motor cortex. Spinal cord was not affected. Treadmill running practiced before neurodegeneration protected cortical motor neurons of the rotenone-exposed rats; but in this case, oxidative stress was not altered, whereas proteasome activity was increased and autophagy decreased. Spinal cord was not protected when exercise was practiced before neurodegeneration. Prolonged treadmill running (10 weeks) increased oxidative stress, autophagy, and proteasome activity, whereas neuron viability was decreased in motor cortex. In spinal cord, this protocol decreased oxidative stress and increased proteasome activity. Major conclusions were that treadmill running practiced before or after the beginning of neurodegeneration may protect motor cortex neurons, whereas prolonged mild running seems to be beneficial for spinal cord.


Spinal cord Motor cortex Autophagy Rotenone Physical exercise Proteasome 



The authors are grateful to Professors Debora R. Fior-Chadi and Edilamar Menezes and Dr. Tiago Fernandes for helping with treadmill running. This study was supported by research grants from Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) (2011/06434-7; 2013/08028-1; 2015/18961-2), Conselho Nacional de desenvolvimento Cientifico e Tecnológico (CNPq) (471999/2013-0; 401670/2013-9) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). K.P.M. received fellowships from CNPq and FAPESP (2017/14273-0). M.F.A, C.M.S. and R.S.C. received fellowships from FAPESP (2011/15281-0, 2011/15283-2, and 2011/00478-2, respectively).


  1. Almeida MF, Chaves RS, Silva CM, Chaves JCS, Melo KP, Ferrari MFR (2016a) BDNF trafficking and signaling impairment during early neurodegeneration is prevented by moderate physical activity. IBRO Rep 1:19–31. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Almeida MF, Silva CM, D'Unhao AM, Ferrari MF (2016b) Aged Lewis rats exposed to low and moderate doses of rotenone are a good model for studying the process of protein aggregation and its effects upon central nervous system cell physiology. Arq Neuropsiquiatr 74:737–744. CrossRefPubMedGoogle Scholar
  3. Almeida MF, Silva CM, Chaves RS, Lima NCR, Almeida RS, Melo KP, Demasi M, Fernandes T, Oliveira EM, Netto LES, Cardoso SM, Ferrari MFR (2018) Effects of mild running on substantia nigra during early neurodegeneration. J Sports Sci 36(12):1363–1370.
  4. Carro E, Trejo JL, Busiguina S, Torres-Aleman I (2001) Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci 21:5678–5684CrossRefGoogle Scholar
  5. Chaves RS, Kazi AI, Silva CM, Almeida MF, Lima RS, Carrettiero DC, Demasi M, Ferrari MFR (2016) Presence of insoluble Tau following rotenone exposure ameliorates basic pathways associated with neurodegeneration. IBRO Rep 1:32–45. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chaves RS, Melo TQ, Martins SA, Ferrari MF (2010) Protein aggregation containing beta-amyloid, alpha-synuclein and hyperphosphorylated tau in cultured cells of hippocampus, substantia nigra and locus coeruleus after rotenone exposure. BMC Neurosci 11:144. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Collier TJ, Kanaan NM, Kordower JH (2011) Ageing as a primary risk factor for Parkinson's disease: evidence from studies of non-human primates. Nat Rev Neurosci 12:359–366. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Demers G, Griffin G, De Vroey G, Haywood JR, Zurlo J, Bedard M (2006) Animal research. Harmonization of animal care and use guidance. Science 312:700–701. CrossRefPubMedGoogle Scholar
  9. Droge W (2002) Aging-related changes in the thiol/disulfide redox state: implications for the use of thiol antioxidants. Exp Gerontol 37:1333–1345CrossRefGoogle Scholar
  10. Erickson KI, Gildengers AG, Butters MA (2013) Physical activity and brain plasticity in late adulthood Dialogues. Clin Neurosci 15:99–108Google Scholar
  11. Goto S, Radak Z (2009) Hormetic effects of reactive oxygen species by exercise: a view from animal studies for successful aging in human. Dose Response 8:68–72. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Greenwood BN, Spence KG, Crevling DM, Clark PJ, Craig WC, Fleshner M (2013) Exercise-induced stress resistance is independent of exercise controllability and the medial prefrontal cortex. Eur J Neurosci 37:469–478. CrossRefPubMedGoogle Scholar
  13. Ji LL, Dickman JR, Kang C, Koenig R (2010) Exercise-induced hormesis may help healthy aging. Dose Response 8:73–79. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ji CH, Kwon YT (2017) Crosstalk and Interplay between the Ubiquitin-Proteasome System and Autophagy. Mol Cells 40:441–449. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kanki R, Nakamizo T, Yamashita H, Kihara T, Sawada H, Uemura K, Kawamata J, Shibasaki H, Akaike A, Shimohama S (2004) Effects of mitochondrial dysfunction on glutamate receptor-mediated neurotoxicity in cultured rat spinal motor neurons. Brain Res 1015:73–81. CrossRefPubMedGoogle Scholar
  16. Keller JN, Huang FF, Markesbery WR (2000) Decreased levels of proteasome activity and proteasome expression in aging spinal cord. Neuroscience 98:149–156CrossRefGoogle Scholar
  17. Lai Y, Hickey RW, Chen Y, Bayιr H, Sullivan ML, Chu CT, Kochanek PM, Dixon CE, Jenkins LW, Graham SH, Watkins SC, Clark RSB (2008) Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant gamma-glutamylcysteinyl ethyl ester. J Cereb Blood Flow Metab 28:540–550. CrossRefPubMedGoogle Scholar
  18. Melo TQ, D'Unhao AM, Martins SA, Farizatto KL, Chaves RS, Ferrari MF (2013) Rotenone-dependent changes of anterograde motor protein expression and mitochondrial mobility in brain areas related to neurodegenerative diseases. Cell Mol Neurobiol 33:327–335. CrossRefPubMedGoogle Scholar
  19. Melo A, Monteiro L, Lima RM, Oliveira DM, Cerqueira MD, El-Bacha RS (2011) Oxidative stress in neurodegenerative diseases: mechanisms and therapeutic perspectives. Oxid Med Cell Longev 2011:467180. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Mora F (2013) Successful brain aging: plasticity, environmental enrichment, and lifestyle. Dialogues Clin Neurosci 15:45–52PubMedPubMedCentralGoogle Scholar
  21. Nixon RA (2005) Endosome function and dysfunction in Alzheimer's disease and other neurodegenerative diseases. Neurobiol Aging 26:373–382. CrossRefPubMedGoogle Scholar
  22. Ohia-Nwoko O, Montazari S, Lau YS, Eriksen JL (2014) Long-term treadmill exercise attenuates tau pathology in P301S tau transgenic mice. Mol Neurodegener 9:54. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Pitts A, Dailey K, Newington JT, Chien A, Arseneault R, Cann T, Thompson LM, Cumming RC (2012) Dithiol-based compounds maintain expression of antioxidant protein peroxiredoxin 1 that counteracts toxicity of mutant huntingtin. J Biol Chem 287:22717–22729. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Radak Z, Chung HY, Koltai E, Taylor AW, Goto S (2008) Exercise, oxidative stress and hormesis. Ageing Res Rev 7:34–42. CrossRefPubMedGoogle Scholar
  25. Radak Z, Ihasz F, Koltai E, Goto S, Taylor AW, Boldogh I (2014) The redox-associated adaptive response of brain to physical exercise. Free Radic Res 48:84–92. CrossRefPubMedGoogle Scholar
  26. Rami A (2009) Review: autophagy in neurodegeneration: firefighter and/or incendiarist? Neuropathol Appl Neurobiol 35:449–461. CrossRefPubMedGoogle Scholar
  27. Samantaray S, Knaryan VH, Guyton MK, Matzelle DD, Ray SK, Banik NL (2007) The parkinsonian neurotoxin rotenone activates calpain and caspase-3 leading to motoneuron degeneration in spinal cord of Lewis rats. Neuroscience 146:741–755. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Silva GM, Netto LES, Simões V, Santos LFA, Gozzo FC, Demasi MAA, Oliveira CLP, Bicev RN, Klitzke CF, Sogayar MC, Demasi M (2012) Redox control of 20S proteasome gating. Antioxid Redox Signal 16:1183–1194. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Stoian I, Oros A, Moldoveanu E (1996) Apoptosis and free radicals. Biochem Mol Med 59:93–97CrossRefGoogle Scholar
  30. Tanida I (2011) Autophagosome formation and molecular mechanism of autophagy. Antioxid Redox Signal 14:2201–2214. CrossRefPubMedGoogle Scholar
  31. Voss MW, Erickson KI, Prakash RS, Chaddock L, Kim JS, Alves H, Szabo A, Phillips SM, Wójcicki TR, Mailey EL, Olson EA, Gothe N, Vieira-Potter VJ, Martin SA, Pence BD, Cook MD, Woods JA, McAuley E, Kramer AF (2013) Neurobiological markers of exercise-related brain plasticity in older adults. Brain Behav Immun 28:90–99. CrossRefPubMedGoogle Scholar
  32. Wu F, Xu HD, Guan JJ, Hou YS, Gu JH, Zhen XC, Qin ZH (2015) Rotenone impairs autophagic flux and lysosomal functions in Parkinson's disease. Neuroscience 284:900–911. CrossRefPubMedGoogle Scholar
  33. Yun HM, Choi DY, Oh KW, Hong JT (2015) PRDX6 exacerbates dopaminergic neurodegeneration in a MPTP mouse model of Parkinson's disease. Mol Neurobiol 52:422–431. CrossRefPubMedGoogle Scholar
  34. Zheng Q, Huang T, Zhang L, Zhou Y, Luo H, Xu H, Wang X (2016) Dysregulation of ubiquitin-proteasome system in neurodegenerative diseases. Front Aging Neurosci 8:303. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253:162–168. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Karla P. Melo
    • 1
  • Carolliny M. Silva
    • 1
  • Michael F. Almeida
    • 1
  • Rodrigo S. Chaves
    • 1
  • Tania Marcourakis
    • 2
  • Sandra M. Cardoso
    • 3
  • Marilene Demasi
    • 4
  • Luis E. S. Netto
    • 1
  • Merari F. R. Ferrari
    • 1
    Email author
  1. 1.Departamento de Genetica e Biologia Evolutiva, Instituto de BiocienciasUniversidade de Sao PauloSao PauloBrazil
  2. 2.Department of Clinical and Toxicological Analyses, School of Pharmaceutical SciencesUniversity of Sao PauloSao PauloBrazil
  3. 3.Center for Neuroscience and Cell Biology and Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  4. 4.Laboratorio de Bioquimica e BiofisicaInstituto ButantanSao PauloBrazil

Personalised recommendations