Neurotoxicity Research

, Volume 35, Issue 2, pp 331–343 | Cite as

Mutual Antagonism of PINK1/Parkin and PGC-1α Contributes to Maintenance of Mitochondrial Homeostasis in Rotenone-Induced Neurotoxicity

  • Kaige Peng
  • Jingsong Xiao
  • Likui Yang
  • Feng Ye
  • Jia Cao
  • Yan SaiEmail author


Parkinson’s disease (PD) is a progressive, selective, and age-related neurodegenerative disease. The pathogenic focus of PD is mitochondrial dysfunction. When mitochondrial homeostasis was damaged, it can lead to reactive oxygen species formation to further accelerate the accumulation of dysfunctional mitochondria, resulting in a vicious cycle harmful to the neuron. PINK1 and Parkin, two proteins that are linked to PD, play vital roles in mitophagy, which was very important in maintaining mitochondrial homeostasis. Thus, at present, we explored mitochondrial biogenesis, mitophagy, and fission/fusion in rotenone-induced dopamine neurotoxicity. In particular, we focused on interactions between the PINK1/Parkin pathway and PGC-1α in the regulation of mitochondrial homeostasis impairment. The results indicated that both the autophagy and mitophagy levels increased significantly and were accompanied by altered levels of PINK1/Parkin proteins in rotenone-induced neurotoxicity. PINK1 influenced mitochondrial biogenesis by inhibiting PGC-1α and mtTFA protein expression as well as the mtDNA copy number. PGC-1α, in turn, inhibited PINK1/Parkin protein expression and the mitophagy levels. Furthermore, the results demonstrated that PINK1 influenced mitochondrial fission/fusion by regulating MFN2 and phosphorylating Drp1. In summary, mutual antagonism of the PINK1/Parkin pathway and PGC-1α formed a balance that regulated mitochondrial biogenesis, fission/fusion, and mitophagy. These effects contributed to the maintenance of mitochondrial homeostasis in rotenone-induced neurotoxicity.


Rotenone PINK1/Parkin Mitophagy PGC-1α Mitochondrial biogenesis Mitochondrial fission/fusion 



The authors thank Dr. Jian Wang and Mrs. Qin Zhang for their help with the observation of mitophagy under confocal laser microscopy.


This work was supported by grants from the NSFC (Natural Science Foundation of China) (81473006, 81273106) to Yan Sai.

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no competing interests.


  1. Adam D (2000) Pesticide use linked to Parkinson's disease. Nature 408:125CrossRefGoogle Scholar
  2. Aquilano K, Vigilanza P, Baldelli S, Pagliei B, Rotilio G, Ciriolo MR (2010) Peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1alpha) and sirtuin 1 (SIRT1) reside in mitochondria: possible direct function in mitochondrial biogenesis. J Biol Chem 285:21590–21599CrossRefGoogle Scholar
  3. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 3:1301–1306CrossRefGoogle Scholar
  4. Bueler H (2009) Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease. Exp Neurol 218:235–246CrossRefGoogle Scholar
  5. Bueler H (2010) Mitochondrial dynamics, cell death and the pathogenesis of Parkinson's disease. Apoptosis 15:1336–1353CrossRefGoogle Scholar
  6. Bultman SJ, Holley DW, GdR G, Pizzo SV, Sidorova TN, Murray KT, Jensen BC, Wang Z, Bevilacqua A, Chen X, Quintana MT, Tannu M, Rosson GB, Pandya K, Willis MS (2016) BRG1 and BRM SWI/SNF ATPases redundantly maintain cardiomyocyte homeostasis by regulating cardiomyocyte mitophagy and mitochondrial dynamics in vivo. Cardiovasc Pathol 25:258–269CrossRefGoogle Scholar
  7. Carelli V, Maresca A, Caporali L, Trifunov S, Zanna C, Rugolo M (2015) Mitochondria: biogenesis and mitophagy balance in segregation and clonal expansion of mitochondrial DNA mutations. Int J Biochem Cell Biol 63:21–24CrossRefGoogle Scholar
  8. Cronin-Furman EN, Borland MK, Bergquist KE, Bennett JP Jr, Trimmer PA (2013) Mitochondrial quality, dynamics and functional capacity in Parkinson's disease cybrid cell lines selected for Lewy body expression. Mol Neurodegener 8:6CrossRefGoogle Scholar
  9. Deng H, Dodson MW, Huang H, Guo M (2008) The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci U S A 105:14503–14508CrossRefGoogle Scholar
  10. Gehrke S, Wu Z, Klinkenberg M, Sun Y, Auburger G, Guo S, Lu B (2015) PINK1 and Parkin control localized translation of respiratory chain component mRNAs on mitochondria outer membrane. Cell Metab 21:95–108CrossRefGoogle Scholar
  11. Gleyzer N, Vercauteren K, Scarpulla RC (2005) Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol 25:1354–1366CrossRefGoogle Scholar
  12. Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73:2424–2428CrossRefGoogle Scholar
  13. Guzman DC, Herrera MO, Brizuela NO, Mejia GB, Olguin HJ, Peraza AV (2017) Trace elements cause oxidative damage in the brain of rats with induced hypotension. Auton Neurosci 208:113–116CrossRefGoogle Scholar
  14. Imai Y, Lu B (2011) Mitochondrial dynamics and mitophagy in Parkinson's disease: disordered cellular power plant becomes a big deal in a major movement disorder. Curr Opin Neurobiol 21:935–941CrossRefGoogle Scholar
  15. Jenner P (2001) Parkinson's disease, pesticides and mitochondrial dysfunction. Trends Neurosci 24:245–247CrossRefGoogle Scholar
  16. Lenaz G (2012) Mitochondria and reactive oxygen species. Which role in physiology and pathology? Adv Exp Med Biol 942:93–136CrossRefGoogle Scholar
  17. Lim J, Kim HW, Youdim MB, Rhyu IJ, Choe KM, Oh YJ (2011) Binding preference of p62 towards LC3-ll during dopaminergic neurotoxin-induced impairment of autophagic flux. Autophagy 7:51–60CrossRefGoogle Scholar
  18. Lutz AK, Exner N, Fett ME, Schlehe JS, Kloos K, Lammermann K, Brunner B, Kurz-Drexler A, Vogel F, Reichert AS, Bouman L, Vogt-Weisenhorn D, Wurst W, Tatzelt J, Haass C, Winklhofer KF (2009) Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J Biol Chem 284:22938–22951CrossRefGoogle Scholar
  19. McNaught KS (2011) Parkin-mediated regulation of mitochondrial dynamics. J Neurochem 118:458–459CrossRefGoogle Scholar
  20. Narendra D, Tanaka A, Suen DF, Youle RJ (2009) Parkin-induced mitophagy in the pathogenesis of Parkinson disease. Autophagy 5:706–708CrossRefGoogle Scholar
  21. O'Flanagan CH, Morais VA, Wurst W, De Strooper B, O'Neill C (2015) The Parkinson's gene PINK1 regulates cell cycle progression and promotes cancer-associated phenotypes. Oncogene 34:1363–1374CrossRefGoogle Scholar
  22. Palikaras K, Lionaki E, Tavernarakis N (2015) Balancing mitochondrial biogenesis and mitophagy to maintain energy metabolism homeostasis. Cell Death Differ 22:1399–1401CrossRefGoogle Scholar
  23. Palikaras K, Tavernarakis N (2014) Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp Gerontol 56:182–188CrossRefGoogle Scholar
  24. Peng K, Tao Y, Zhang J, Wang J, Ye F, Dan G, Zhao Y, Cai Y, Zhao J, Wu Q, Zou Z, Cao J, Sai Y (2016) Resveratrol regulates mitochondrial biogenesis and fission/fusion to attenuate rotenone-induced neurotoxicity. Oxidative Med Cell Longev 2016:6705621CrossRefGoogle Scholar
  25. Peng K, Yang L, Wang J, Ye F, Dan G, Zhao Y, Cai Y, Cui Z, Ao L, Liu J, Zou Z, Sai Y, Cao J (2017) The interaction of mitochondrial biogenesis and fission/fusion mediated by PGC-1alpha regulates rotenone-induced dopaminergic neurotoxicity. Mol Neurobiol 54:3783–3797CrossRefGoogle Scholar
  26. Perier C, Bove J, Vila M, Przedborski S (2003) The rotenone model of Parkinson's disease. Trends Neurosci 26:345–346CrossRefGoogle Scholar
  27. Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, Pallanck LJ (2008) The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci U S A 105:1638–1643CrossRefGoogle Scholar
  28. Poole AC, Thomas RE, Yu S, Vincow ES, Pallanck L (2010) The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS One 5:e10054CrossRefGoogle Scholar
  29. Rona-Voros K, Weydt P (2010) The role of PGC-1alpha in the pathogenesis of neurodegenerative disorders. Curr Drug Targets 11:1262–1269CrossRefGoogle Scholar
  30. Santos D, Cardoso SM (2012) Mitochondrial dynamics and neuronal fate in Parkinson's disease. Mitochondrion 12:428–437CrossRefGoogle Scholar
  31. Scarpulla RC (2011) Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta 1813:1269–1278CrossRefGoogle Scholar
  32. Stallons LJ, Funk JA, Schnellmann RG (2013) Mitochondrial homeostasis in acute organ failure. Curr Pathobiol Rep 1:169–177CrossRefGoogle Scholar
  33. Trillo MA, Ubeda A, Blanchard JP, House DE, Blackman CF (1996) Magnetic fields at resonant conditions for the hydrogen ion affect neurite outgrowth in PC-12 cells: a test of the ion parametric resonance model. Bioelectromagnetics 17:10–20CrossRefGoogle Scholar
  34. Twig G, Shirihai OS (2011) The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal 14:1939–1951CrossRefGoogle Scholar
  35. Van Laar VS, Berman SB (2009) Mitochondrial dynamics in Parkinson's disease. Exp Neurol 218:247–256CrossRefGoogle Scholar
  36. Van Laar VS, Berman SB (2013) The interplay of neuronal mitochondrial dynamics and bioenergetics: implications for Parkinson's disease. Neurobiol Dis 51:43–55CrossRefGoogle Scholar
  37. Vasquez-Trincado C, Garcia-Carvajal I, Pennanen C, Parra V, Hill JA, Rothermel BA, Lavandero S (2016) Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol 594:509–525CrossRefGoogle Scholar
  38. Woods JR Jr, Plessinger MA, Fantel A (1998) An introduction to reactive oxygen species and their possible roles in substance abuse. Obstet Gynecol Clin N Am 25:219–236CrossRefGoogle Scholar
  39. Yu W, Sun Y, Guo S, Lu B (2011) The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons. Hum Mol Genet 20:3227–3240CrossRefGoogle Scholar
  40. Zhang Q, Tamura Y, Roy M, Adachi Y, Iijima M, Sesaki H (2014) Biosynthesis and roles of phospholipids in mitochondrial fusion, division and mitophagy. Cell Mol Life Sci 71:3767–3778CrossRefGoogle Scholar
  41. Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, Eklund AC, Zhang-James Y, Kim PD, Hauser MA, Grunblatt E, Moran LB, Mandel SA, Riederer P, Miller RM, Federoff HJ, Wullner U, Papapetropoulos S, Youdim MB, Cantuti-Castelvetri I, Young AB, Vance JM, Davis RL, Hedreen JC, Adler CH, Beach TG, Graeber MB, Middleton FA, Rochet JC, Scherzer CR, Global PDGEC (2010) PGC-1alpha, a potential therapeutic target for early intervention in Parkinson's disease. Sci Transl Med 2:52ra73CrossRefGoogle Scholar
  42. Ziv I, Barzilai A, Offen D, Nardi N, Melamed E (1997) Nigrostriatal neuronal death in Parkinson's disease--a passive or an active genetically-controlled process? J Neural Transm Suppl 49:69–76PubMedGoogle Scholar
  43. Ziviani E, Tao RN, Whitworth AJ (2010) Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci U S A 107:5018–5023CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kaige Peng
    • 1
  • Jingsong Xiao
    • 1
  • Likui Yang
    • 1
  • Feng Ye
    • 1
  • Jia Cao
    • 1
  • Yan Sai
    • 1
    Email author
  1. 1.Institute of Toxicology, College of Preventive MedicineThird Military Medical UniversityChongqingPeople’s Republic of China

Personalised recommendations