Advertisement

Neurotoxicity Research

, Volume 35, Issue 1, pp 111–121 | Cite as

Alterations in the Gut Microbiota of Rats Chronically Exposed to Volatilized Cocaine and Its Active Adulterants Caffeine and Phenacetin

  • Cecilia Scorza
  • Claudia Piccini
  • Marcela Martínez Busi
  • Juan Andrés Abin Carriquiry
  • Pablo ZuninoEmail author
ORIGINAL ARTICLE

Abstract

A role of the gut microbiota in influencing brain function and emotional disorders has been suggested. However, only a few studies have investigated the gut microbiota in the context of drug addiction.

Cocaine can be smoked (i.e., crack or coca paste) and its consumption is associated with a very high abuse liability and toxicity. We have recently reported that cocaine base seized samples contained caffeine and phenacetin as main active adulterants, which may potentiate its motivational, reinforcing, and toxic effects. However, the effect of volatilized cocaine and adulterants on the gut microbiota remained unknown. In the present study, we evaluated the effect of volatilized cocaine and two adulterants on the structure, diversity, and functionality of the gut microbiota in rats. Animals were chronically exposed to the fume of cocaine, caffeine, and phenacetin during 14 days. At the end of the treatment, feces were collected and the structure, composition, and functional predictions of the gut microbiota were analyzed. Cocaine significantly decreased the community richness and diversity of the gut microbiota while both cocaine and phenacetin drastically changed its composition. Phenacetin significantly increased the Firmicutes-Bacteroidetes ratio compared to the control group. When the predicted metagenome functional content of the bacterial communities was analyzed, all the treatments induced a dramatic decrease of the aromatic amino acid decarboxylase gene. Our findings suggest that repeated exposure to volatilized cocaine, as well as to the adulterants caffeine and phenacetin, leads to changes in the gut microbiota. Future studies are needed to understand the mechanisms underlying these changes and how this information may support the development of novel treatments in drug addiction.

Keywords

Gut-brain axis Cocaine Adulterants Addiction Microbiota 

Notes

Acknowledgements

This study was partially supported by the Programa de Desarrollo de Ciencias Básicas (PEDECIBA, Uruguay). MMB has a postgraduate fellowship from the Agencia Nacional de Investigación e Innovación (ANII, Uruguay). We are grateful to Dr. Lorenzo Leggio and Dr. Kuei Y. Tseng for their critical reading of this manuscript.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Compliance with Ethical Standards

The study was carried out in accordance with the Instituto de Investigaciones Biológicas Clemente Estable (IIBCE) Bioethics Committee’s requirements, consistent with the National Institutes of Health guide for the care and use of laboratory animals (NIH Publication No. 8023, revised 1978), and under the current ethical regulations of the national law on animal experimentation no. 18.611.

References

  1. Abin-Carriquiry JA, Martínez Busi M, Galvalisi M, Minteguiaga M, Prieto JP, Scorza C (2018) Identification and quantification of cocaine and active adulterants in coca-paste seized samples: useful scientific support to health care. Neurotox Res.  https://doi.org/10.1007/s12640-018-9887-1
  2. Arango V, Underwood MD, Mann JJ (2002) Serotonin brain circuits involved in major depression and suicide. Prog Brain Res 136:443–453CrossRefGoogle Scholar
  3. Bourassa MW, Alim I, Bultman SJ, Ratan RR (2016) Butyrate, neuroepigenetics and the gut microbiome: can a high fiber diet improve brain health? Neurosci Lett 625:56–63CrossRefGoogle Scholar
  4. Broseus J, Gentile N, Esseiva P (2016) The cutting of cocaine and heroin: a critical review. Forensic Sci Int 262:73–83CrossRefGoogle Scholar
  5. Brown JM, Hanson GR, Fleckenstein AE (2001) Regulation of the vesicular monoamine transporter-2: a novel mechanism for cocaine and other psychostimulants. J Pharmacol Exp Ther 296:762–767PubMedGoogle Scholar
  6. Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF, Costa-Mattioli M (2016) Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 165:1762–1775CrossRefGoogle Scholar
  7. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefGoogle Scholar
  8. Christenson JG, Dairman W, Udenfriend S (1972) On the identity of DOPA decarboxylase and 5-hydroxytryptophan decarboxylase (immunological titration-aromatic L-amino acid decarboxylase-serotonin-dopamine-norepinephrine). Proc Natl Acad Sci U S A 69:343–347CrossRefGoogle Scholar
  9. Chung CS, Chang PF, Liao CH, Lee TH, Chen Y, Lee YC, Wu MS, Wang HP, Ni YH (2016) Differences of microbiota in small bowel and faeces between irritable bowel syndrome patients and healthy subjects. Scand J Gastroenterol 51:410–419CrossRefGoogle Scholar
  10. Clarke K (1993) Nonparametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  11. Cole C, Jones L, Mcveigh J, Kicman A, Syed Q, Bellis M (2011) Adulterants in illicit drugs: a review of empirical evidence. Drug Test Anal 3:89–96CrossRefGoogle Scholar
  12. Crumeyrolle-Arias M, Jaglin M, Bruneau A, Vancassel S, Cardona A, Daugé V, Naudon L, Rabot S (2014) Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 42:207–217CrossRefGoogle Scholar
  13. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712CrossRefGoogle Scholar
  14. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85:5274–5278CrossRefGoogle Scholar
  15. Dinan TG, Cryan JF (2017) Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol 595:489–503CrossRefGoogle Scholar
  16. Ferré S (2016) Mechanisms of the psychostimulant effects of caffeine: implications for substance use disorders. Psychopharmacology 233:1963–1979CrossRefGoogle Scholar
  17. Galvalisi G, Prieto JP, Martínez M, Abin-Carriquiry JA, Scorza C (2015) Smoked cocaine: chemical analysis of seized samples and the role of caffeine in its central actions. IBRO 9th World Congress, Rio de Janeiro, Brazil. http://ibro.info/events/meetings/
  18. Galvalisi M, Prieto JP, Martínez M, Abin-Carriquiry JA, Scorza C (2017) Caffeine induces a stimulant effect and increases dopamine release in the nucleus accumbens shell through the pulmonary inhalation route of administration in rats. Neurotox Res 31:90–98CrossRefGoogle Scholar
  19. Gossop M, Griffiths P, Powis B, Strang J (1992) Severity of dependence and route of administration of heroin, cocaine and amphetamines. Br J Addict 87:1527–1536CrossRefGoogle Scholar
  20. Grenham S, Clarke G, Cryan J, Dinan TG (2011) Brain-gut-microbe communication in health and disease. Front Physiol 2:94CrossRefGoogle Scholar
  21. Hammer Ø, Haper DAT, Ryan PD (2001) PAST: Paleontological Statistics software package for education and data analysis. Paleontol Electron 4:4–9Google Scholar
  22. Hatsukami D, Fischman M (1996) Crack cocaine and cocaine hydrochloride. Are the differences myth or reality? J Am Med Assoc 276:1580–1588CrossRefGoogle Scholar
  23. Kim BS, Jeon YS, Chun J (2013) Current status and future promise of the human microbiome. Pediatr Gastroenterol Hepatol Nutr 16:71–79CrossRefGoogle Scholar
  24. Kiraly DD, Walker DM, Calipari ES, Labonte B, Issler O, Pena CJ, Ribeiro EA, Russo SJ, Nestler EJ (2016) Alterations of the host microbiome affect behavioral responses to cocaine. Sci Rep 6:35455CrossRefGoogle Scholar
  25. Kish SJ, Kalasinsky KS, Derkach P, Schmunk GA, Guttman M, Ang L, Adams V, Furukawa Y, Haycock JW (2001) Striatal dopaminergic and serotonergic markers in human heroin users. Neuropsychopharmacology 24:561–567CrossRefGoogle Scholar
  26. Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG, Knight R (2011) Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Bioinformatics Chapter 10:Unit 10.7.  https://doi.org/10.1002/0471250953.bi1007s36
  27. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821CrossRefGoogle Scholar
  28. Laukens D, Brinkman BM, Raes J, De Vos M, Vandenabeele P (2016) Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiol Rev 40:117–132CrossRefGoogle Scholar
  29. Li H, Limenitakis JP, Fuhrer T, Geuking MB, Lawson MA, Wyss M, Brugiroux S, Keller I, Macpherson JA, Rupp S, Stolp B, Stein JV, Stecher B, Sauer U, McCoy KD, Macpherson AJ (2015) The outer mucus layer hosts a distinct intestinal microbial niche. Nat Commun 6:8292CrossRefGoogle Scholar
  30. López Hill X, Prieto J, Meikle M, Urbanavicius J, Abin-Carriquiry A, Prunell G, Umpiérrez E, Scorza C (2011) Coca-paste seized samples characterization: chemical analysis, stimulating effect in rats and relevance of caffeine as a major adulterant. Behav Brain Res 221:134–141CrossRefGoogle Scholar
  31. Lozupone C, Hamady M, Knight R (2006) UniFrac - an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7:371CrossRefGoogle Scholar
  32. Ma JZ, Beuten J, Payne TJ, Dupont RT, Elston RC, Li MD (2005) Haplotype analysis indicates an association between the DOPA decarboxylase (DDC) gene and nicotine dependence. Hum Mol Genet 14:1691–1698CrossRefGoogle Scholar
  33. Mathur R, Barlow GM (2015) Obesity and the microbiome. Expert Rev Gastroenterol Hepatol 9:1087–1099CrossRefGoogle Scholar
  34. Meehan CJ, Beiko RG (2014) A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol 6:703–713CrossRefGoogle Scholar
  35. Muñiz JA, Prieto JP, González B, Sosa MH, Cadet JL, Scorza C, Urbano FJ, Bisagno V (2017) Cocaine and caffeine effects on the conditioned place preference test: concomitant changes on early genes within the mouse prefrontal cortex and nucleus accumbens. Front Behav Neurosci 11:200CrossRefGoogle Scholar
  36. Ning T, Gong X, Xie L, Ma B (2017) Gut microbiota analysis in rats with methamphetamine-induced conditioned place preference. Front Microbiol 8:1620CrossRefGoogle Scholar
  37. Pérez-Martínez G, Bäuerl C, Collado MC (2014) Understanding gut microbiota in elderly’s health will enable intervention through probiotics. Benef Microbes 5:235–246CrossRefGoogle Scholar
  38. Prieto JP, Galvalisi M, López Hill X, Meikle MN, Abin-Carriquiry JA, Scorza C (2015) Caffeine enhances and accelerates the expression of sensitization induced by coca paste indicating its relevance as a main adulterant. Am J Addict 24:475–481CrossRefGoogle Scholar
  39. Prieto JP, Scorza C, Serra GP, Perra V, Piras G, Galvalisi M, Abin-Carriquiry JA, Valentini V (2016) Cocaine motivational value is enhanced when co-administered with caffeine: relevance of adulterants in reinforcement. Psychopharmacology 233:2879–2889CrossRefGoogle Scholar
  40. Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, Flint HJ, Louis P (2014) Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 8:1323–1335CrossRefGoogle Scholar
  41. Rieder R, Wisniewski PJ, Alderman BL, Campbell SC (2017) Microbes and mental health: a review. Brain Behav Immun 66:9–17CrossRefGoogle Scholar
  42. Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ. 4:e2584Google Scholar
  43. Roselli M, Devirgiliis C, Zinno P, Guantario B, Finamore A, Rami R, Perozzi G (2017) Impact of supplementation with a food-derived microbial community on obesity-associated inflammation and gut microbiota composition. Genes Nutr 4:12–25Google Scholar
  44. Samaha AN, Robinson TE (2005) Why does the rapid delivery of drugs to the brain promote addiction? Trends Pharmacol Sci 26:82–87CrossRefGoogle Scholar
  45. Sekirov I, Finlay BB (2009) The role of the intestinal microbiota in enteric infection. J Physiol 587:4159–4167CrossRefGoogle Scholar
  46. Skosnik PD, Cortes-Briones JA (2016) Targeting the ecology within: the role of the gut-brain axis and human microbiota in drug addiction. Med Hypotheses 93:77–80CrossRefGoogle Scholar
  47. Strati F, Cavalieri D, Albanese D, De Felice C, Donati C, Hayek J (2017) New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 5:24CrossRefGoogle Scholar
  48. Temko JE, Bouhlal S, Farokhnia M, Lee MR, Cryan JF, Leggio L (2017) The microbiota, the gut and the brain in eating and alcohol use disorders: a ‘ménage à trois’? Alcohol Alcohol 52:403–413CrossRefGoogle Scholar
  49. Villar Núñez MLÁ, Sánchez Morcillo J, Ruíz Martínez MA (2018) Purity and adulteration in cocaine seizures and drug market inspection in Galicia (Spain) across an eight-year period. Drug Test Anal 10:381–391CrossRefGoogle Scholar
  50. Volkow ND, Hitzemann R, Wang GJ, Fowler JS, Wolf AP, Dewey SL, Handlesman L (1992) Long-term frontal brain metabolic changes in cocaine abusers. Synapse 11:184–190CrossRefGoogle Scholar
  51. Volkow ND, Fowler JS, Wang GJ, Baler R, Telang F (2009) Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology 56:3–8CrossRefGoogle Scholar
  52. Volpe GE, Ward H, Mwamburi M, Dinh D, Bhalchandra S, Wanke C, Kane AV (2014) Associations of cocaine use and HIV infection with the intestinal microbiota, microbial translocation, and inflammation. J Stud Alcohol Drugs 75:347–357CrossRefGoogle Scholar
  53. Wiley NC, Dinan TG, Ross RP, Stanton C, Clarke G, Cryan JF (2017) The microbiota-gut-brain axis as a key regulator of neural function and the stress response: implications for human and animal health. J Anim Sci 95:3225–3246PubMedGoogle Scholar
  54. Williams BB, Van Benschoten AH, Cimermancic P, Donia MS, Zimmermann M, Taketani M et al (2014) Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 16:495–503CrossRefGoogle Scholar
  55. Xiao HW, Ge C, Feng GX, Li Y, Luo D, Dong JL, Li H, Wang H, Cui M, Fan SJ (2018) Gut microbiota modulates alcohol withdrawal-induced anxiety in mice. Toxicol Lett 287:23–30CrossRefGoogle Scholar
  56. Zhang Q, You J, Volkow ND, Choi J, Yin W, Wang W, Pan Y, Du C (2016) Chronic cocaine disrupts neurovascular networks and cerebral function: optical imaging studies in rodents. J Biomed Opt 21:26006CrossRefGoogle Scholar
  57. Zhu YY, Li H, Xu XL, Li CB, Zhou GH (2016) The gut microbiota in young and middle-aged rats showed different responses to chicken protein in their diet. BMC Microbiol 16:281CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Cecilia Scorza
    • 1
  • Claudia Piccini
    • 2
  • Marcela Martínez Busi
    • 3
  • Juan Andrés Abin Carriquiry
    • 3
  • Pablo Zunino
    • 2
    Email author
  1. 1.Departamento de Neurofarmacología ExperimentalInstituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
  2. 2.Departamento de MicrobiologíaInstituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
  3. 3.Departamento de NeuroquímicaInstituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay

Personalised recommendations