Advertisement

Neurotoxicity Research

, Volume 34, Issue 3, pp 649–659 | Cite as

Long-Term Neurobehavioral Consequences of a Single Ketamine Neonatal Exposure in Rats: Effects on Cellular Viability and Glutamate Transport in Frontal Cortex and Hippocampus

  • Tuane Bazanella Sampaio
  • Laíse Figueiredo de Oliveira
  • Leandra Celso Constantino
  • Ana Paula Costa
  • Gabriela Godoy Poluceno
  • Wagner Carbolin Martins
  • Tharine Dal-Cim
  • Karen Andrinéia de Oliveira
  • Fabiana Kalyne Ludka
  • Rui Daniel Prediger
  • Carla Inês Tasca
  • Frederico C. Pereira
ORIGINAL ARTICLE
  • 89 Downloads

Abstract

The neonatal exposure to general anesthetics has been associated with neuronal apoptosis and dendritic spines morphologic changes in the developing brain. Ketamine, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, is widely used in pediatric patients to induce general anesthesia, analgesia, and perioperative sedation. In the present study, we investigated short- and long-term effects of a single ketamine (20 mg/kg, s.c.) neonatal exposure at postnatal day 7 in rats on the hippocampal and frontal cortical cellular viability. Additionally, putative neurochemical alterations and neurobehavioral impairments were evaluated in the adulthood. Ketamine neonatal administration selectively decreased cellular viability in the hippocampus, but not in the frontal cortex, 24 h after the treatment. Interestingly, a single ketamine neonatal exposure prevented the vulnerability to glutamate-induced neurotoxicity in the frontal cortex of adult rats. No short- or long-term damage to cellular membranes, as an indicative of cell death, was observed in hippocampal or cortical slices. However, ketamine induced a long-term increase in hippocampal glutamate uptake. Regarding behavioral analysis, neonatal ketamine exposure did not alter locomotor activity and anxiety-related parameters evaluated in the open-field test. However, ketamine administration disrupted the hippocampal-dependent object recognition ability of adult rats, while improved the motor coordination addressed on the rotarod. These findings indicate that a single neonatal ketamine exposure induces a short-term reduction in the hippocampal, but not in cortical, cellular viability, and long-term alterations in hippocampal glutamate transport, improvement on motor performance, and short-term recognition memory impairment.

Keywords

Ketamine Glutamatergic neurotransmission Locomotor activity Memory Neonatal 

Notes

Funding

This research was supported by grants from Brazilian funding agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq #307319/2012-1), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/PVE 052/2012; CAPES-FCT 2014), Programa de Apoio aos Núcleos de Excelência (PRONEX-Project NENASC), Fundação de Apoio à Pesquisa do Estado de Santa Catarina (FAPESC), Instituto Nacional de Ciência e Tecnologia (INCT for Excitotoxicity and Neuroprotection); and by Portuguese funding agencies Fundação para a Ciência e Tecnologia (FCT, Portugal) (Strategic Project 2015-UID/NEU/04539/2013), COMPETE-FEDER (POCI-01-0145-FEDER-007400), Centro 2020 Regional Operational Programmes (CENTRO-01-0145-FEDER-000012: HealthyAging 2020 and CENTRO-01-0145-FEDER-000008: BrainHealth 2020). C.I.T. and R.D.P. are recipient of research fellowship from CNPq.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. Abe H, Ishida Y, Iwasaki T (2004) Perirhinal N-methyl-D-aspartate and muscarinic systems participate in object recognition in rats. Neurosci Lett 356:191–194.  https://doi.org/10.1016/j.neulet.2003.11.049 CrossRefPubMedGoogle Scholar
  2. Bolles RC, Woods PJ (1964) The ontogeny of behaviour in the albino rat. Anim Behav 12:427–441.  https://doi.org/10.1016/0003-3472(64)90062-4 CrossRefGoogle Scholar
  3. Briner A, De Roo M, Dayer A, Muller D, Habre W et al (2010) Volatile anesthetics rapidly increase dendritic spine density in the rat medial prefrontal cortex during synaptogenesis. Anesthesiology 112:546–556.  https://doi.org/10.1097/ALN.0b013e3181cd7942 CrossRefPubMedGoogle Scholar
  4. Chen WA, Parnell SE, West JR (1999) Early postnatal alcohol exposure produced long-term deficits in brain weight, but not the number of neurons in the locus coeruleus. Dev Brain Res 118:33–38.  https://doi.org/10.1016/S0165-3806(99)00128-5 CrossRefGoogle Scholar
  5. Constantino LC, Tasca CI, Boeck CR (2014) The role of NMDA receptors in the development of brain resistance through pre- and postconditioning. Aging Dis 5:430–441.  https://doi.org/10.14336/AD.2014.0500430 CrossRefGoogle Scholar
  6. Dal-Cim T, Ludka FK, Martins WC, Reginato C, Parada E, Egea J, López MG, Tasca CI (2013) Guanosine controls inflammatory pathways to afford neuroprotection of hippocampal slices under oxygen and glucose deprivation conditions. J Neurochem 126:437–450.  https://doi.org/10.1111/jnc.12324 CrossRefPubMedGoogle Scholar
  7. Davidson AJ (2011) Anesthesia and neurotoxicity to the developing brain: the clinical relevance. Paediatr Anaesth 21:716–721.  https://doi.org/10.1111/j.1460-9592.2010.03506.x CrossRefGoogle Scholar
  8. Dumas TC (2005) Developmental regulation of cognitive abilities: modified composition of a molecular switch turns on associative learning. Prog Neurobiol 76:189–211.  https://doi.org/10.1016/j.pneurobio.2005.08.002 CrossRefPubMedGoogle Scholar
  9. Flick RP, Katusic SK, Colligan RC, Wilder RT, Voigt RG, Olson MD, Sprung J, Weaver AL, Schroeder DR, Warner DO (2011) Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics 128:e1053–e1061.  https://doi.org/10.1542/peds.2011-0351 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fredriksson A, Archer T (2003) Hyperactivity following postnatal NMDA antagonist treatment: reversal by D-amphetamine. Neurotox Res 5:549–564CrossRefGoogle Scholar
  11. Fredriksson A, Archer T (2004) Neurobehavioural deficits associated with apoptotic neurodegeneration and vulnerability for ADHD. Neurotox Res 6:435–456CrossRefGoogle Scholar
  12. Gambrill AC, Barria A (2011) NMDA receptor subunit composition controls synaptogenesis and synapse stabilization. Proc Natl Acad Sci U S A 108:5855–5860.  https://doi.org/10.1073/pnas.1012676108 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hamon B, Heinemann U (1988) Developmental changes in neuronal sensitivity to excitatory amino acids in area CA1 of the rat hippocampus. Brain Res 466:286–290CrossRefGoogle Scholar
  14. Hestrin S (1992) Developmental regulation of NMDA receptor-mediated synaptic currents at a central synapse. Nature 357:686–689.  https://doi.org/10.1038/357686a0 CrossRefPubMedGoogle Scholar
  15. Huang L, Liu Y, Jin W, Ji X, Dong Z (2012) Ketamine potentiates hippocampal neurodegeneration and persistent learning and memory impairment through the PKCgamma-ERK signaling pathway in the developing brain. Brain Res 1476:164–171.  https://doi.org/10.1016/j.brainres.2012.07.059 CrossRefPubMedGoogle Scholar
  16. Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vockler J et al (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283:70–74.  https://doi.org/10.1126/science.283.5398.70 CrossRefPubMedGoogle Scholar
  17. Ing C, DiMaggio C, Whitehouse A, Hegarty MK, Brady J, von Ungern-Sternberg BS, Davidson A, Wood AJJ, Li G, Sun LS (2012) Long-term differences in language and cognitive function after childhood exposure to anesthesia. Pediatrics 130:e476–e485.  https://doi.org/10.1542/peds.2011-3822 CrossRefPubMedGoogle Scholar
  18. Janoff A (1964) Alterations in lysosomes (intracellular enzymes) during shock; effects of preconditioning (tolerance) and protective drugs. Int Anesthesiol Clin 2:251–269CrossRefGoogle Scholar
  19. Jevtovic-Todorovic V, Absalom AR, Blomgren K, Brambrink A, Crosby G, Culley DJ, Fiskum G, Giffard RG, Herold KF, Loepke AW, Ma D, Orser BA, Planel E, Slikker W Jr, Soriano SG, Stratmann G, Vutskits L, Xie Z, Hemmings HC Jr (2013) Anaesthetic neurotoxicity and neuroplasticity: an expert group report and statement based on the BJA Salzburg seminar. Br J Anaesth 111:143–151.  https://doi.org/10.1093/bja/aet177 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jiang C, Wan X, Jankovic J, Christian ST, Pristupa ZB, Niznik HB, Sundsmo JS, le W (2004) Dopaminergic properties and experimental anti-parkinsonian effects of IPX750 in rodent models of Parkinson disease. Clin Neuropharmacol 27:63–73CrossRefGoogle Scholar
  21. Kalkman CJ, Peelen L, Moons KG, Veenhuizen M, Bruens M, Sinnema G, de Jong TP (2009) Behavior and development in children and age at the time of first anesthetic exposure. Anesthesiology 110:805–812.  https://doi.org/10.1097/ALN.0b013e31819c7124 CrossRefPubMedGoogle Scholar
  22. Lecointre M, Vezier C, Benard M, Ramdani Y, Dupre N et al (2015) Age-dependent alterations of the NMDA receptor developmental profile and adult behavior in postnatally ketamine-treated mice. Dev Neurobiol 75:315–333.  https://doi.org/10.1002/dneu.22232 CrossRefPubMedGoogle Scholar
  23. Lisek M, Ferenc B, Studzian M, Pulaski L, Guo F, Zylinska L, Boczek T (2017) Glutamate deregulation in ketamine-induced psychosis-a potential role of PSD95, NMDA receptor and PMCA interaction. Front Cell Neurosci 11:181.  https://doi.org/10.3389/fncel.2017.00181 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Liu Y, Wong TP, Aarts M, Rooyakkers A, Liu L, Lai TW, Wu DC, Lu J, Tymianski M, Craig AM, Wang YT (2007) NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 27:2846–2857.  https://doi.org/10.1523/JNEUROSCI.0116-07.2007 CrossRefPubMedGoogle Scholar
  25. Liu F, Paule MG, Ali S, Wang C (2011) Ketamine-induced neurotoxicity and changes in gene expression in the developing rat brain. Curr Neuropharmacol 9:256–261.  https://doi.org/10.2174/157015911795017155 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedPubMedCentralGoogle Scholar
  27. Ludka FK, Dal-Cim T, Binder LB, Constantino LC, Massari C, Tasca CI (2016) Atorvastatin and fluoxetine prevent oxidative stress and mitochondrial dysfunction evoked by glutamate toxicity in hippocampal slices. Mol Neurobiol 54:3149–3161.  https://doi.org/10.1007/s12035-016-9882-6 CrossRefPubMedGoogle Scholar
  28. Molz S, Dal-Cim T, Tasca CI (2009) Guanosine-5′-monophosphate induces cell death in rat hippocampal slices via ionotropic glutamate receptors activation and glutamate uptake inhibition. Neurochem Int 55:703–709.  https://doi.org/10.1016/j.neuint.2009.06.015 CrossRefPubMedGoogle Scholar
  29. Molz S, Dal-Cim T, Budni J, Martin-de-Saavedra MD, Egea J et al (2011) Neuroprotective effect of guanosine against glutamate-induced cell death in rat hippocampal slices is mediated by the phosphatidylinositol-3 kinase/Akt/ glycogen synthase kinase 3beta pathway activation and inducible nitric oxide synthase inhibition. J Neurosci Res 89:1400–1408.  https://doi.org/10.1002/jnr.22681 CrossRefPubMedGoogle Scholar
  30. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63.  https://doi.org/10.1016/0022-1759(83)90303-4 CrossRefGoogle Scholar
  31. Olney JW, Farber NB, Wozniak DF, Jevtovic-Todorovic V, Ikonomidou C (2000) Environmental agents that have the potential to trigger massive apoptotic neurodegeneration in the developing brain. Environ Health Perspect 108(Suppl 3):383–388CrossRefGoogle Scholar
  32. Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14:383–400.  https://doi.org/10.1038/nrn3504 CrossRefPubMedGoogle Scholar
  33. Paule MG, Li M, Allen RR, Liu F, Zou X, Hotchkiss C, Hanig JP, Patterson TA, Slikker W Jr, Wang C (2011) Ketamine anesthesia during the first week of life can cause long-lasting cognitive deficits in rhesus monkeys. Neurotoxicol Teratol 33:220–230.  https://doi.org/10.1016/j.ntt.2011.01.001 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Piermartiri TC, Vandresen-Filho S, de Araujo Herculano B, Martins WC, Dal'agnolo D et al (2009) Atorvastatin prevents hippocampal cell death due to quinolinic acid-induced seizures in mice by increasing Akt phosphorylation and glutamate uptake. Neurotox Res 16:106–115.  https://doi.org/10.1007/s12640-009-9057-6 CrossRefPubMedGoogle Scholar
  35. Rhodes JS, Garland T Jr, Gammie SC (2003) Patterns of brain activity associated with variation in voluntary wheel-running behavior. Behav Neurosci 117:1243–1256.  https://doi.org/10.1037/0735-7044.117.6.1243 CrossRefGoogle Scholar
  36. Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108(Suppl 3):511–533CrossRefGoogle Scholar
  37. Robinson MB, Jackson JG (2016) Astroglial glutamate transporters coordinate excitatory signaling and brain energetics. Neurochem Int 98:56–71.  https://doi.org/10.1016/j.neuint.2016.03.014 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Soriano SG, Liu Q, Li J, Liu JR, Han XH, Kanter JL, Bajic D, Ibla JC (2010) Ketamine activates cell cycle signaling and apoptosis in the neonatal rat brain. Anesthesiology 112:1155–1163.  https://doi.org/10.1097/ALN.0b013e3181d3e0c2 CrossRefPubMedGoogle Scholar
  39. Sprung J, Flick RP, Katusic SK, Colligan RC, Barbaresi WJ, Bojanić K, Welch TL, Olson MD, Hanson AC, Schroeder DR, Wilder RT, Warner DO (2012) Attention-deficit/hyperactivity disorder after early exposure to procedures requiring general anesthesia. Mayo Clin Proc 87:120–129.  https://doi.org/10.1016/j.mayocp.2011.11.008 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Sun L (2010) Early childhood general anaesthesia exposure and neurocognitive development. Br J Anaesth 105(Suppl 1):i61–i68.  https://doi.org/10.1093/bja/aeq302 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83:482–504.  https://doi.org/10.1037//0033-2909.83.3.482 CrossRefGoogle Scholar
  42. Wang C (2012) Advanced pre-clinical research approaches and models to studying pediatric anesthetic neurotoxicity. Front Neurol 3:142.  https://doi.org/10.3389/fneur.2012.00142 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Yan J, Jiang H (2014) Dual effects of ketamine: neurotoxicity versus neuroprotection in anesthesia for the developing brain. J Neurosurg Anesthesiol 26:155–160.  https://doi.org/10.1097/ANA.0000000000000027 CrossRefGoogle Scholar
  44. Yon JH, Daniel-Johnson J, Carter LB, Jevtovic-Todorovic V (2005) Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways. Neuroscience 135:815–827.  https://doi.org/10.1016/j.neuroscience.2005.03.064 CrossRefPubMedGoogle Scholar
  45. Young C, Jevtovic-Todorovic V, Qin YQ, Tenkova T, Wang H, Labruyere J, Olney JW (2005) Potential of ketamine and midazolam, individually or in combination, to induce apoptotic neurodegeneration in the infant mouse brain. Br J Pharmacol 146:189–197.  https://doi.org/10.1038/sj.bjp.0706301 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Yuan T, Bellone C (2013) Glutamatergic receptors at developing synapses: the role of GluN3A-containing NMDA receptors and GluA2-lacking AMPA receptors. Eur J Pharmacol 719:107–111.  https://doi.org/10.1016/j.ejphar.2013.04.056 CrossRefPubMedGoogle Scholar
  47. Zhao T, Li C, Wei W, Zhang H, Ma D, Song X, Zhou L (2016) Prenatal ketamine exposure causes abnormal development of prefrontal cortex in rat. Sci Rep 6:26865.  https://doi.org/10.1038/srep26865 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zou X, Patterson TA, Sadovova N, Twaddle NC, Doerge DR, Zhang X, Fu X, Hanig JP, Paule MG, Slikker W, Wang C (2009) Potential neurotoxicity of ketamine in the developing rat brain. Toxicol Sci 108:149–158.  https://doi.org/10.1093/toxsci/kfn270 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tuane Bazanella Sampaio
    • 1
    • 2
  • Laíse Figueiredo de Oliveira
    • 3
    • 4
  • Leandra Celso Constantino
    • 1
  • Ana Paula Costa
    • 1
  • Gabriela Godoy Poluceno
    • 1
  • Wagner Carbolin Martins
    • 1
  • Tharine Dal-Cim
    • 1
  • Karen Andrinéia de Oliveira
    • 1
  • Fabiana Kalyne Ludka
    • 1
  • Rui Daniel Prediger
    • 2
  • Carla Inês Tasca
    • 1
  • Frederico C. Pereira
    • 3
    • 4
    • 5
  1. 1.Departamento de Bioquímica, Centro de Ciências BiológicasUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  2. 2.Departamento de Farmacologia, Centro de Ciências BiológicasUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  3. 3.Instituto de Farmacologia e Terapêuticas ExperimentaisUniversidade de CoimbraCoimbraPortugal
  4. 4.Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  5. 5.CNC.IBILI – Universidade de CoimbraCoimbraPortugal

Personalised recommendations