Neurotoxicity Research

, Volume 35, Issue 1, pp 19–28 | Cite as

A C. elegans Model for the Study of RAGE-Related Neurodegeneration

  • Adi PinkasEmail author
  • Kun He Lee
  • Pan Chen
  • Michael Aschner


The receptor for advanced glycation products (RAGE) is a cell surface, multi-ligand receptor belonging to the immunoglobulin superfamily; this receptor is implicated in a variety of maladies, via inflammatory pathways and induction of oxidative stress. Currently, RAGE is being studied using a limited number of mammalian in vivo, and some complementary in vitro, models. Here, we present a Caenorhabditis elegans model for the study of RAGE-related pathology: a transgenic strain, expressing RAGE in all neurons, was generated and subsequently tested behaviorally, developmentally, and morphologically. In addition to RAGE expression being associated with a significantly shorter lifespan, the following behavioral observations were made when RAGE-expressing worms were compared to the wild type: RAGE-expressing worms showed an impaired dopaminergic system, evaluated by measuring the fluorescent signal of GFP tagging; these worms exhibited decreased locomotion—both general and following ethanol exposure—as measured by counting body bends in adult worms; RAGE expression was also associated with impaired recovery of quiescence and pharyngeal pumping secondary to heat shock, as a significantly smaller fraction of RAGE-expressing worms engaged in these behaviors in the 2 h immediately following the heat shock. Finally, significant developmental differences were also found between the two strains: RAGE expression leads to a significantly smaller fraction of hatched eggs 24 h after laying and also to a significantly slower developmental speed overall. As evidence for the role of RAGE in a variety of neuropathologies accumulates, the use of this novel and expedient model should facilitate the elucidation of relevant underlying mechanisms and also the development of efficient therapeutic strategies.


RAGE C. elegans Behavior Neurodegeneration Development 



Receptor for advanced glycation end products


High-mobility group box 1


Lysophosphatidic acid


Alzheimer’s disease


Parkinson’s disease


Huntington’s disease


Creutzfeldt-Jakob’s disease


Amyotrophic lateral sclerosis


Compliance with Ethical Standards

Grant Support for This Research

This research was supported by NIEHS—R01 ES07331, R01 ES10563, and R01 ES020852.


  1. Abrigo J, Rivera JC, Aravena J, Cabrera D, Simon F, Ezquer F, Ezquer M, Cabello-Verrugio C (2016) High fat diet-induced skeletal muscle wasting is decreased by mesenchymal stem cells administration: implications on oxidative stress, ubiquitin proteasome pathway activation, and myonuclear apoptosis. Oxidative Med Cell Longev 2016:9047821CrossRefGoogle Scholar
  2. Accili D, Arden KC (2004) FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117(4):421–426PubMedCrossRefGoogle Scholar
  3. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2(8):675–680PubMedCrossRefGoogle Scholar
  4. Avila DS, Somlyai G, Somlyai I, Aschner M (2012) Anti-aging effects of deuterium depletion on Mn-induced toxicity in a C. elegans model. Toxicol Lett 211(3):319–324PubMedPubMedCentralCrossRefGoogle Scholar
  5. Basta G, Lazzerini G, Massaro M, Simoncini T, Tanganelli P, Fu C, Kislinger T, Stern DM, Schmidt AM, De Caterina R (2002) Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation 105(7):816–822PubMedCrossRefGoogle Scholar
  6. Baynes JW (2003) Chemical modification of proteins by lipids in diabetes. Clin Chem Lab Med 41(9):1159–1165PubMedCrossRefGoogle Scholar
  7. Bierhaus A, Hofmann MA, Ziegler R, Nawroth PP (1998) AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovasc Res 37(3):586–600PubMedCrossRefGoogle Scholar
  8. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94PubMedPubMedCentralGoogle Scholar
  9. Brett J, Schmidt AM, Yan SD, Zou YS, Weidman E, Pinsky D, Nowygrod R, Neeper M, Przysiecki C, Shaw A (1993) Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am J Pathol 143(6):1699–1712PubMedPubMedCentralGoogle Scholar
  10. Brownlee M (2000) Negative consequences of glycation. Metabolism 49(2 Suppl 1):9–13PubMedCrossRefGoogle Scholar
  11. Bucciarelli LG, Wendt T, Rong L, Lalla E, Hofmann MA, Goova MT, Taguchi A, Yan SF, Yan SD, Stern DM, Schmidt AM (2002) RAGE is a multiligand receptor of the immunoglobulin superfamily: implications for homeostasis and chronic disease. Cell Mol Life Sci 59(7):1117–1128PubMedCrossRefGoogle Scholar
  12. Chavakis T, Bierhaus A, Al-Fakhri N, Schneider D, Witte S, Linn T, Nagashima M, Morser J, Arnold B, Preissner KT, Nawroth PP (2003) The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med 198(10):1507–1515PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chen P, Burdette AJ, Porter JC, Ricketts JC, Fox SA, Nery FC, Hewett JW, Berkowitz LA, Breakefield XO, Caldwell KA, Caldwell GA (2010) The early-onset torsion dystonia-associated protein, torsinA, is a homeostatic regulator of endoplasmic reticulum stress response. Hum Mol Genet 19(18):3502–3515PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chu HP, Liao Y, Novak JS, Hu Z, Merkin JJ, Shymkiv Y, Braeckman BP, Dorovkov MV, Nguyen A, Clifford PM, Nagele RG, Harrison DE, Ellis RE, Ryazanov AG (2014) Germline quality control: eEF2K stands guard to eliminate defective oocytes. Dev Cell 28(5):561–572PubMedPubMedCentralCrossRefGoogle Scholar
  15. Culetto E, Sattelle DB (2000) A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Hum Mol Genet 9(6):869–877PubMedCrossRefGoogle Scholar
  16. Daffu G, del Pozo CH, O'Shea KM, Ananthakrishnan R, Ramasamy R, Schmidt AM (2013) Radical roles for RAGE in the pathogenesis of oxidative stress in cardiovascular diseases and beyond. Int J Mol Sci 14(10):19891–19910PubMedPubMedCentralCrossRefGoogle Scholar
  17. Davies AG, McIntire SL (2005) Ethanol intoxication WormBook, ed. The C. elegans Research Community, from
  18. Davies AG, Pierce-Shimomura JT, Kim H, VanHoven MK, Thiele TR, Bonci A, Bargmann CI, McIntire SL (2003) A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 115(6):655–666PubMedCrossRefGoogle Scholar
  19. Davis KC, Raizen DM (2017) A mechanism for sickness sleep: lessons from invertebrates. J Physiol 595(16):5415–5424PubMedPubMedCentralCrossRefGoogle Scholar
  20. Ejdesjo A, Brings S, Fleming T, Fred RG, Nawroth PP, Eriksson UJ (2016) Receptor for advanced glycation end products (RAGE) knockout reduces fetal dysmorphogenesis in murine diabetic pregnancy. Reprod Toxicol 62:62–70PubMedCrossRefGoogle Scholar
  21. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247PubMedCrossRefGoogle Scholar
  22. Greene MF, Hare JW, Cloherty JP, Benacerraf BR, Soeldner JS (1989) First-trimester hemoglobin A1 and risk for major malformation and spontaneous abortion in diabetic pregnancy. Teratology 39(3):225–231PubMedCrossRefGoogle Scholar
  23. Hanewinckel R, Ikram MA, Van Doorn PA (2016) Peripheral neuropathies. Handb Clin Neurol 138:263–282PubMedCrossRefGoogle Scholar
  24. Hanford LE, Enghild JJ, Valnickova Z, Petersen SV, Schaefer LM, Schaefer TM, Reinhart TA, Oury TD (2004) Purification and characterization of mouse soluble receptor for advanced glycation end products (sRAGE). J Biol Chem 279(48):50019–50024PubMedPubMedCentralCrossRefGoogle Scholar
  25. Harris RA (1999) Ethanol actions on multiple ion channels: which are important? Alcohol Clin Exp Res 23(10):1563–1570PubMedGoogle Scholar
  26. He M, Kubo H, Morimoto K, Fujino N, Suzuki T, Takahasi T, Yamada M, Yamaya M, Maekawa T, Yamamoto Y, Yamamoto H (2011) Receptor for advanced glycation end products binds to phosphatidylserine and assists in the clearance of apoptotic cells. EMBO Rep 12(4):358–364PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hill AJ, Mansfield R, Lopez JM, Raizen DM, Van Buskirk C (2014) Cellular stress induces a protective sleep-like state in C. elegans. Curr Biol 24(20):2399–2405PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, Avila C, Kambham N, Bierhaus A, Nawroth P, Neurath MF, Slattery T, Beach D, McClary J, Nagashima M, Morser J, Stern D, Schmidt AM (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97(7):889–901PubMedCrossRefGoogle Scholar
  29. Honda Y, Honda S (1999) The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J 13(11):1385–1393PubMedCrossRefGoogle Scholar
  30. Hunt-Newbury R, Viveiros R, Johnsen R, Mah A, Anastas D, Fang L, Halfnight E, Lee D, Lin J, Lorch A, McKay S, Okada HM, Pan J, Schulz AK, Tu D, Wong K, Zhao Z, Alexeyenko A, Burglin T, Sonnhammer E, Schnabel R, Jones SJ, Marra MA, Baillie DL, Moerman DG (2007) High-throughput in vivo analysis of gene expression in Caenorhabditis elegans. PLoS Biol 5(9):e237PubMedPubMedCentralCrossRefGoogle Scholar
  31. Juranek J, Ray R, Banach M, Rai V (2015) Receptor for advanced glycation end-products in neurodegenerative diseases. Rev Neurosci 26(6):691–698PubMedCrossRefGoogle Scholar
  32. Kaletta T, Hengartner MO (2006) Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 5(5):387–398PubMedCrossRefGoogle Scholar
  33. Kane CJ, Drew PD (2016) Inflammatory responses to alcohol in the CNS: nuclear receptors as potential therapeutics for alcohol-induced neuropathologies. J Leukoc Biol 100(5):951–959PubMedPubMedCentralCrossRefGoogle Scholar
  34. Kim SJ, Ryu MJ, Han J, Jang Y, Kim J, Lee MJ, Ryu I, Ju X, Oh E, Chung W, Kweon GR, Heo JY (2017) Activation of the HMGB1-RAGE axis upregulates TH expression in dopaminergic neurons via JNK phosphorylation. Biochem Biophys Res Commun 493(1):358–364PubMedCrossRefGoogle Scholar
  35. Ko SY, Ko HA, Chu KH, Shieh TM, Chi TC, Chen HI, Chang WC, Chang SS (2015) The possible mechanism of advanced glycation end products (AGEs) for Alzheimer’s disease. PLoS One 10(11):e0143345PubMedPubMedCentralCrossRefGoogle Scholar
  36. Koppes LL, Dekker JM, Hendriks HF, Bouter LM, Heine RJ (2005) Moderate alcohol consumption lowers the risk of type 2 diabetes: a meta-analysis of prospective observational studies. Diabetes Care 28(3):719–725PubMedCrossRefGoogle Scholar
  37. Kuhla A, Ludwig SC, Kuhla B, Munch G, Vollmar B (2015) Advanced glycation end products are mitogenic signals and trigger cell cycle reentry of neurons in Alzheimer’s disease brain. Neurobiol Aging 36(2):753–761PubMedCrossRefGoogle Scholar
  38. Li J, Liu D, Sun L, Lu Y, Zhang Z (2012) Advanced glycation end products and neurodegenerative diseases: mechanisms and perspective. J Neurol Sci 317(1–2):1–5PubMedCrossRefGoogle Scholar
  39. Markaki M, Tavernarakis N (2010) Modeling human diseases in Caenorhabditis elegans. Biotechnol J 5(12):1261–1276PubMedCrossRefGoogle Scholar
  40. Martin G, O'Connell RJ, Pietrzykowski AZ, Treistman SN, Ethier MF, Madison JM (2008) Interleukin-4 activates large-conductance, calcium-activated potassium (BKCa) channels in human airway smooth muscle cells. Exp Physiol 93(7):908–918PubMedPubMedCentralCrossRefGoogle Scholar
  41. McCulloch DK, Campbell IW, Prescott RJ, Clarke BF (1980) Effect of alcohol intake on symptomatic peripheral neuropathy in diabetic men. Diabetes Care 3(2):245–247PubMedCrossRefGoogle Scholar
  42. Mello C, Fire A (1995) DNA transformation. Methods Cell Biol 48:451–482PubMedCrossRefGoogle Scholar
  43. Mendoza AD, Woodruff TK, Wignall SM, O'Halloran TV (2017) Zinc availability during germline development impacts embryo viability in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 191:194–202PubMedCrossRefGoogle Scholar
  44. Mimouni F, Miodovnik M, Siddiqi TA, Khoury J, Tsang RC (1988) Perinatal asphyxia in infants of insulin-dependent diabetic mothers. J Pediatr 113(2):345–353PubMedCrossRefGoogle Scholar
  45. Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267(21):14998–15004PubMedGoogle Scholar
  46. Nelson MD, Lee KH, Churgin MA, Hill AJ, Van Buskirk C, Fang-Yen C, Raizen DM (2014) FMRFamide-like FLP-13 neuropeptides promote quiescence following heat stress in Caenorhabditis elegans. Curr Biol 24(20):2406–2410PubMedPubMedCentralCrossRefGoogle Scholar
  47. Nelson MD, Janssen T, York N, Lee KH, Schoofs L, Raizen DM (2015) FRPR-4 is a G-protein coupled neuropeptide receptor that regulates behavioral quiescence and posture in Caenorhabditis elegans. PLoS One 10(11):e0142938PubMedPubMedCentralCrossRefGoogle Scholar
  48. Nonet ML, Saifee O, Zhao H, Rand JB, Wei L (1998) Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants. J Neurosci 18(1):70–80PubMedCrossRefGoogle Scholar
  49. Pamplona R, Ilieva E, Ayala V, Bellmunt MJ, Cacabelos D, Dalfo E, Ferrer I, Portero-Otin M (2008) Maillard reaction versus other nonenzymatic modifications in neurodegenerative processes. Ann N Y Acad Sci 1126:315–319PubMedCrossRefGoogle Scholar
  50. Pinkas A, Aschner M (2016) Advanced glycation end-products and their receptors: related pathologies, recent therapeutic strategies, and a potential model for future neurodegeneration studies. Chem Res Toxicol 29(5):707–714PubMedCrossRefGoogle Scholar
  51. Pinkas A, Aschner M (2017) AGEs/RAGE-related neurodegeneration: daf-16 as a mediator, insulin as an ameliorant, and C. elegans as an expedient research model. Chem Res Toxicol 30(1):38–42PubMedCrossRefGoogle Scholar
  52. Pla A, Pascual M, Guerri C (2016) Autophagy constitutes a protective mechanism against ethanol toxicity in mouse astrocytes and neurons. PLoS One 11(4):e0153097PubMedPubMedCentralCrossRefGoogle Scholar
  53. Rai V, Toure F, Chitayat S, Pei R, Song F, Li Q, Zhang J, Rosario R, Ramasamy R, Chazin WJ, Schmidt AM (2012) Lysophosphatidic acid targets vascular and oncogenic pathways via RAGE signaling. J Exp Med 209(13):2339–2350PubMedPubMedCentralCrossRefGoogle Scholar
  54. Ramasamy R, Shekhtman A, Schmidt AM (2016) The multiple faces of RAGE—opportunities for therapeutic intervention in aging and chronic disease. Expert Opin Ther Targets 20(4):431–446PubMedCrossRefGoogle Scholar
  55. Ringstad N, Horvitz B, Koelle M (2005) Locomoiton. WormBook, ed. The C. elegans Research Community, from
  56. Rubinstein M, Phillips TJ, Bunzow JR, Falzone TL, Dziewczapolski G, Zhang G, Fang Y, Larson JL, McDougall JA, Chester JA, Saez C, Pugsley TA, Gershanik O, Low MJ, Grandy DK (1997) Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell 90(6):991–1001PubMedCrossRefGoogle Scholar
  57. Salahuddin P, Rabbani G, Khan RH (2014) The role of advanced glycation end products in various types of neurodegenerative disease: a therapeutic approach. Cell Mol Biol Lett 19(3):407–437PubMedPubMedCentralCrossRefGoogle Scholar
  58. Schmidt AM, Vianna M, Gerlach M, Brett J, Ryan J, Kao J, Esposito C, Hegarty H, Hurley W, Clauss M (1992) Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem 267(21):14987–14997PubMedGoogle Scholar
  59. Schmidt AM, Mora R, Cao R, Yan SD, Brett J, Ramakrishnan R, Tsang TC, Simionescu M, Stern D (1994) The endothelial cell binding site for advanced glycation end products consists of a complex: an integral membrane protein and a lactoferrin-like polypeptide. J Biol Chem 269(13):9882–9888PubMedGoogle Scholar
  60. Schmidt AM, Yan SD, Stern DM (1995) The dark side of glucose. Nat Med 1(10):1002–1004PubMedCrossRefGoogle Scholar
  61. Serratos IN, Castellanos P, Pastor N, Millan-Pacheco C, Colin-Gonzalez AL, Rembao D, Perez-Montfort R, Cabrera N, Sanchez-Garcia A, Gomez I, Rangel-Lopez E, Santamaria A (2016) Early expression of the receptor for advanced glycation end products in a toxic model produced by 6-hydroxydopamine in the rat striatum. Chem Biol Interact 249:10–18PubMedCrossRefGoogle Scholar
  62. Singh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end-products: a review. Diabetologia 44(2):129–146PubMedPubMedCentralCrossRefGoogle Scholar
  63. Starich TA, Hall DH, Greenstein D (2014) Two classes of gap junction channels mediate soma-germline interactions essential for germline proliferation and gametogenesis in Caenorhabditis elegans. Genetics 198(3):1127–1153PubMedPubMedCentralCrossRefGoogle Scholar
  64. Stogsdill JA, Stogsdill MP, Porter JL, Hancock JM, Robinson AB, Reynolds PR (2012) Embryonic overexpression of receptors for advanced glycation end-products by alveolar epithelium induces an imbalance between proliferation and apoptosis. Am J Respir Cell Mol Biol 47(1):60–66PubMedCrossRefGoogle Scholar
  65. Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56(1):110–156PubMedCrossRefGoogle Scholar
  66. Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100(1):64–119PubMedCrossRefGoogle Scholar
  67. Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W, Tanji N, Lu Y, Lalla E, Fu C, Hofmann MA, Kislinger T, Ingram M, Lu A, Tanaka H, Hori O, Ogawa S, Stern DM, Schmidt AM (2000) Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405(6784):354–360PubMedCrossRefGoogle Scholar
  68. Teismann P, Sathe K, Bierhaus A, Leng L, Martin HL, Bucala R, Weigle B, Nawroth PP, Schulz JB (2012) Receptor for advanced glycation endproducts (RAGE) deficiency protects against MPTP toxicity. Neurobiol Aging 33(10):2478–2490PubMedPubMedCentralCrossRefGoogle Scholar
  69. Thornalley PJ (1998) Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification of AGEs. Cell Mol Biol (Noisy-le-grand) 44(7):1013–1023Google Scholar
  70. Vlassara H, Bucala R, Striker L (1994) Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging. Lab Investig 70(2):138–151PubMedGoogle Scholar
  71. Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA (2018) Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 9(2):119PubMedPubMedCentralCrossRefGoogle Scholar
  72. Way GL, Wolfe RR, Eshaghpour E, Bender RL, Jaffe RB, Ruttenberg HD (1979) The natural history of hypertrophic cardiomyopathy in infants of diabetic mothers. J Pediatr 95(6):1020–1025PubMedCrossRefGoogle Scholar
  73. White JG, Southgate E, Thomson JN, Brenner S (1976) The structure of the ventral nerve cord of Caenorhabditis elegans. Philos Trans R Soc Lond Ser B Biol Sci 275(938):327–348CrossRefGoogle Scholar
  74. Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382(6593):685–691PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Albert Einstein College of MedicineJack and Pearl Resnick CampusBronxUSA

Personalised recommendations