Neurotoxicity Research

, Volume 34, Issue 3, pp 574–583 | Cite as

Protective Effects of Fibroblast Growth Factor 21 Against Amyloid-Beta1–42-Induced Toxicity in SH-SY5Y Cells

  • Mona Amiri
  • Nady Braidy
  • Malihe Aminzadeh


Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive loss of cholinergic neurons. Amyloid beta is a misfolded protein that represents one of the key pathological hallmarks of AD. Numerous studies have shown that Aβ1–42 induces oxidative damage, neuroinflammation, and apoptosis, leading to cognitive decline in AD. Recently, fibroblast growth factor 21 (FGF21) has been suggested to be a potential regulator of oxidative stress in mammalian cells. FGF21 has been shown to improve insulin sensitivity, reduce hyperglycemia, increase adipose tissue glucose uptake and lipolysis, and decrease body fat and weight loss by enhancing energy expenditure. In this study, we investigated the effect of FGF21 Aβ1–42 toxicity in SH-SY5Y neuroblastoma cells. Our data shows that FGF21 significantly decreased Aβ1−42-induced toxic effects and repressed oxidative stress and apoptosis in cells exposed to Aβ1–42 peptide. Our investigation also confirmed that FGF21 pretreatment favorably affects HSP90/TLR4/NF-κB signaling pathway. Therefore, FGF21 represents a viable therapeutic strategy to abrogate Aβ1–42-induced cellular inflammation and apoptotic death in the SH-SY5Y neuroblastoma cells.


Alzheimer’s disease Amyloid beta 42 Neuroblastoma Oxidative stress Neuroinflammation FGF21 


Funding Information

This study was part of a M.Sc. thesis project that was approved and financially supported by Iran University of Medical Sciences in 2016 (grant#94-04-30- 26938).


  1. Ambade A, Catalano D, Lim A, Mandrekar P (2012) Inhibition of heat shock protein (molecular weight 90 kDa) attenuates proinflammatory cytokines and prevents lipopolysaccharide-induced liver injury in mice. Hepatology 55(5):1585–1595CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amin FU, Shah SA, Kim MO (2017) Vanillic acid attenuates Abeta1-42-induced oxidative stress and cognitive impairment in mice. Sci Rep 7:40753CrossRefPubMedPubMedCentralGoogle Scholar
  3. Benilova I, Karran E, De Strooper B (2012) The toxic Abeta oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15(3):349–357CrossRefPubMedGoogle Scholar
  4. Benomar Y, Amine H, Crepin D, Al Rifai S, Riffault L, Gertler A, Taouis M (2016) Central resistin/TLR4 impairs adiponectin signaling, contributing to insulin and FGF21 resistance. Diabetes 65(4):913–926CrossRefPubMedGoogle Scholar
  5. Berglund ED, Li CY, Bina HA, Lynes SE, Michael MD, Shanafelt AB, Kharitonenkov A, Wasserman DH (2009) Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology 150(9):4084–4093CrossRefPubMedPubMedCentralGoogle Scholar
  6. Blair LJ, Sabbagh JJ, Dickey CA (2014) Targeting Hsp90 and its co-chaperones to treat Alzheimer’s disease. Expert Opin Ther Targets 18(10):1219–1232CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bookout AL, de Groot MH, Owen BM, Lee S, Gautron L, Lawrence HL, Ding X, Elmquist JK, Takahashi JS, Mangelsdorf DJ, Kliewer SA (2013) FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med 19(9):1147–1152CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brahma MK, Adam RC, Pollak NM, Jaeger D, Zierler KA, Pocher N, Schreiber R, Romauch M, Moustafa T, Eder S, Ruelicke T, Preiss-Landl K, Lass A, Zechner R, Haemmerle G (2014) Fibroblast growth factor 21 is induced upon cardiac stress and alters cardiac lipid homeostasis. J Lipid Res 55(11):2229–2241CrossRefPubMedPubMedCentralGoogle Scholar
  9. Butterfield DA (2002) Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic Res 36(12):1307–1313CrossRefPubMedGoogle Scholar
  10. Butterfield DA, Castegna A, Lauderback CM, Drake J (2002) Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging 23(5):655–664CrossRefPubMedGoogle Scholar
  11. Butterfield DA, Swomley AM, Sultana R (2013) Amyloid beta-peptide (1-42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. Antioxid Redox Signal 19(8):823–835CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cong WT, Ling J, Tian HS, Ling R, Wang Y, Huang BB, Zhao T, Duan YM, Jin LT, Li XK (2013) Proteomic study on the protective mechanism of fibroblast growth factor 21 to ischemia-reperfusion injury. Can J Physiol Pharmacol 91(11):973–984CrossRefPubMedGoogle Scholar
  13. De Sousa-Coelho AL, Relat J, Hondares E, Perez-Marti A, Ribas F, Villarroya F, Marrero PF, Haro D (2013) FGF21 mediates the lipid metabolism response to amino acid starvation. J Lipid Res 54(7):1786–1797CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dolezal V, Kasparova J (2003) Beta-amyloid and cholinergic neurons. Neurochem Res 28(3–4):499–506CrossRefPubMedGoogle Scholar
  15. Donnini S, Cantara S, Morbidelli L, Giachetti A, Ziche M (2006) FGF-2 overexpression opposes the beta amyloid toxic injuries to the vascular endothelium. Cell Death Differ 13(7):1088–1096CrossRefPubMedGoogle Scholar
  16. Douris N, Stevanovic DM, Fisher FM, Cisu TI, Chee MJ, Nguyen NL, Zarebidaki E, Adams AC, Kharitonenkov A, Flier JS, Bartness TJ, Maratos-Flier E (2015) Central fibroblast growth factor 21 browns white fat via sympathetic action in male mice. Endocrinology 156(7):2470–2481CrossRefPubMedPubMedCentralGoogle Scholar
  17. Emanuelli B, Vienberg SG, Smyth G, Cheng C, Stanford KI, Arumugam M, Michael MD, Adams AC, Kharitonenkov A, Kahn CR (2014) Interplay between FGF21 and insulin action in the liver regulates metabolism. J Clin Invest 124(2):515–527CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fon Tacer K, Bookout AL, Ding X, Kurosu H, John GB, Wang L, Goetz R, Mohammadi M, Kuro-o M, Mangelsdorf DJ, Kliewer SA (2010) Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol 24(10):2050–2064CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gilbert BJ (2013) The role of amyloid beta in the pathogenesis of Alzheimer’s disease. J Clin Pathol 66(5):362–366CrossRefPubMedGoogle Scholar
  20. Gómez-Sámano MÁ, Grajales-Gómez M, Zuarth-Vázquez JM, Navarro-Flores MF, Martínez-Saavedra M, Juárez-León ÓA, Morales-García MG, Enríquez-Estrada VM, Gómez-Pérez FJ, Cuevas-Ramos D (2017) Fibroblast growth factor 21 and its novel association with oxidative stress. Redox Biol 11(Supplement C):335–341CrossRefPubMedGoogle Scholar
  21. Heinitz K, Beck M, Schliebs R, Perez-Polo JR (2006) Toxicity mediated by soluble oligomers of beta-amyloid(1-42) on cholinergic SN56.B5.G4 cells. J Neurochem 98(6):1930–1945CrossRefPubMedGoogle Scholar
  22. Henderson B, Pockley AG (2010) Molecular chaperones and protein-folding catalysts as intercellular signaling regulators in immunity and inflammation. J Leukoc Biol 88(3):445–462CrossRefPubMedGoogle Scholar
  23. Hochstrasser T, Hohsfield LA, Sperner-Unterweger B, Humpel C (2013) Beta-amyloid induced effects on cholinergic, serotonergic, and dopaminergic neurons is differentially counteracted by anti-inflammatory drugs. J Neurosci Res 91(1):83–94PubMedGoogle Scholar
  24. Hua F, Ma J, Ha T, Xia Y, Kelley J, Williams DL, Kao RL, Browder IW, Schweitzer JB, Kalbfleisch JH, Li C (2007) Activation of Toll-like receptor 4 signaling contributes to hippocampal neuronal death following global cerebral ischemia/reperfusion. J Neuroimmunol 190(1–2):101–111CrossRefPubMedPubMedCentralGoogle Scholar
  25. Huang N-Q, Jin H, Zhou S-y, Shi J-s, Jin F (2017) TLR4 is a link between diabetes and Alzheimer’s disease. Behav Brain Res 316(Supplement C):234–244CrossRefPubMedGoogle Scholar
  26. Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, Elmquist JK, Gerard RD, Burgess SC, Hammer RE, Mangelsdorf DJ, Kliewer SA (2007) Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 5(6):415–425CrossRefPubMedGoogle Scholar
  27. Kar S, Slowikowski SP, Westaway D, Mount HT (2004) Interactions between beta-amyloid and central cholinergic neurons: implications for Alzheimer’s disease. J Psychiatry Neurosci 29(6):427–441PubMedPubMedCentralGoogle Scholar
  28. Kim HW, Lee JE, Cha JJ, Hyun YY, Kim JE, Lee MH, Song HK, Nam DH, Han JY, Han SY, Han KH, Kang YS, Cha DR (2013) Fibroblast growth factor 21 improves insulin resistance and ameliorates renal injury in db/db mice. Endocrinology 154(9):3366–3376CrossRefPubMedGoogle Scholar
  29. Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, Volpe JJ, Vartanian T (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A 100(14):8514–8519CrossRefPubMedPubMedCentralGoogle Scholar
  30. Leng Y, Wang Z, Tsai LK, Leeds P, Fessler EB, Wang J, Chuang DM (2015) FGF-21, a novel metabolic regulator, has a robust neuroprotective role and is markedly elevated in neurons by mood stabilizers. Mol Psychiatry 20(2):215–223CrossRefPubMedGoogle Scholar
  31. Liu Q, Li Y, Jiang W, Li Y, Zhou L, Song B, Liu X (2016) Inhibition of HSP90 promotes neural stem cell survival from oxidative stress through attenuating NF-kappaB/p65 activation. Oxidative Med Cell Longev 2016:3507290Google Scholar
  32. Makela J, Tselykh TV, Maiorana F, Eriksson O, Do HT, Mudo G, Korhonen LT, Belluardo N, Lindholm D (2014) Fibroblast growth factor-21 enhances mitochondrial functions and increases the activity of PGC-1alpha in human dopaminergic neurons via Sirtuin-1. Springerplus 3:2CrossRefPubMedPubMedCentralGoogle Scholar
  33. Minoretti P, Gazzaruso C, Vito CD, Emanuele E, Bianchi M, Coen E, Reino M, Geroldi D (2006) Effect of the functional toll-like receptor 4 Asp299Gly polymorphism on susceptibility to late-onset Alzheimer's disease. Neurosci Lett 391(3):147–149CrossRefPubMedGoogle Scholar
  34. Mosconi L, Pupi A, De Leon MJ (2008) Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer’s disease. Ann N Y Acad Sci 1147:180–195CrossRefPubMedPubMedCentralGoogle Scholar
  35. Movsesyan VA, Yakovlev AG, Dabaghyan EA, Stoica BA, Faden AI (2002) Ceramide induces neuronal apoptosis through the caspase-9/caspase-3 pathway. Biochem Biophys Res Commun 299(2):201–207Google Scholar
  36. Nishimura T, Nakatake Y, Konishi M, Itoh N (2000) Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 1492(1):203–206CrossRefPubMedGoogle Scholar
  37. O'Neill LAJ, Golenbock D, Bowie AG (2013) The history of Toll-like receptors [mdash] redefining innate immunity. Nat Rev Immunol 13(6):453–460CrossRefPubMedGoogle Scholar
  38. O'Neill S, Humphries D, Tse G, Marson LP, Dhaliwal K, Hughes J, Ross JA, Wigmore SJ, Harrison EM (2015) Heat shock protein 90 inhibition abrogates TLR4-mediated NF-kappaB activity and reduces renal ischemia-reperfusion injury. Sci Rep 5:12958CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ovsepian SV, Herms J (2013) Cholinergic neurons-keeping check on amyloid beta in the cerebral cortex. Front Cell Neurosci 7:252CrossRefPubMedPubMedCentralGoogle Scholar
  40. Planavila A, Redondo I, Hondares E, Vinciguerra M, Munts C, Iglesias R, Gabrielli LA, Sitges M, Giralt M, van Bilsen M, Villarroya F (2013) Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat Commun 4:2019CrossRefPubMedGoogle Scholar
  41. Rhein V, Baysang G, Rao S, Meier F, Bonert A, Muller-Spahn F, Eckert A (2009) Amyloid-beta leads to impaired cellular respiration, energy production and mitochondrial electron chain complex activities in human neuroblastoma cells. Cell Mol Neurobiol 29(6–7):1063–1071CrossRefPubMedGoogle Scholar
  42. Sa-Nguanmoo P, Tanajak P, Kerdphoo S, Satjaritanun P, Wang X, Liang G, Li X, Jiang C, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2016) FGF21 improves cognition by restored synaptic plasticity, dendritic spine density, brain mitochondrial function and cell apoptosis in obese-insulin resistant male rats. Horm Behav 85:86–95CrossRefPubMedGoogle Scholar
  43. Sarruf DA, Thaler JP, Morton GJ, German J, Fischer JD, Ogimoto K, Schwartz MW (2010) Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes 59(7):1817–1824CrossRefPubMedPubMedCentralGoogle Scholar
  44. Shi M, Liu C, Cook TJ, Bullock KM, Zhao Y, Ginghina C, Li Y, Aro P, Dator R, He C, Hipp MJ, Zabetian CP, Peskind ER, Hu SC, Quinn JF, Galasko DR, Banks WA, Zhang J (2014) Plasma exosomal alpha-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol 128(5):639–650CrossRefPubMedPubMedCentralGoogle Scholar
  45. Singhal G, Fisher FM, Chee MJ, Tan TG, El Ouaamari A, Adams AC, Najarian R, Kulkarni RN, Benoist C, Flier JS, Maratos-Flier E (2016) Fibroblast growth factor 21 (FGF21) protects against high fat diet induced inflammation and islet hyperplasia in pancreas. PLoS One 11(2):e0148252CrossRefPubMedPubMedCentralGoogle Scholar
  46. Straub L, Wolfrum C (2015) FGF21, energy expenditure and weight loss—how much brown fat do you need? Mol Metab 4(9):605–609CrossRefPubMedPubMedCentralGoogle Scholar
  47. Su JH, Zhao M, Anderson AJ, Srinivasan A, Cotman CW (2001) Activated caspase-3 expression in Alzheimer’s and aged control brain: correlation with Alzheimer pathology. Brain Res 898(2):350–357CrossRefPubMedGoogle Scholar
  48. Swomley AM, Forster S, Keeney JT, Triplett J, Zhang Z, Sultana R, Butterfield DA (2014) Abeta, oxidative stress in Alzheimer disease: evidence based on proteomics studies. Biochim Biophys Acta 1842(8):1248–1257CrossRefPubMedGoogle Scholar
  49. Takuma H, Tomiyama T, Kuida K, Mori H (2004) Amyloid beta peptide-induced cerebral neuronal loss is mediated by caspase-3 in vivo. J Neuropathol Exp Neurol 63(3):255–261CrossRefPubMedGoogle Scholar
  50. Tang SC, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG, Lathia JD, Siler DA, Chigurupati S, Ouyang X, Magnus T, Camandola S, Mattson MP (2007) Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci U S A 104(34):13798–13803CrossRefPubMedPubMedCentralGoogle Scholar
  51. Toth, C. (2014) Chapter 32—diabetes and neurodegeneration in the brain. In: D. W. Zochodne and R. A. Malik (eds) Handbook of clinical neurology, vol 126. Elsevier, New York, p 489–511Google Scholar
  52. Triantafilou M, Triantafilou K (2004) Heat-shock protein 70 and heat-shock protein 90 associate with Toll-like receptor 4 in response to bacterial lipopolysaccharide. Biochem Soc Trans 32(Pt 4):636–639CrossRefPubMedGoogle Scholar
  53. Van Eldik LJ, Carrillo MC, Cole PE, Feuerbach D, Greenberg BD, Hendrix JA, Kennedy M, Kozauer N, Margolin RA, Molinuevo JL, Mueller R, Ransohoff RM, Wilcock DM, Bain L, Bales K (2016) The roles of inflammation and immune mechanisms in Alzheimer’s disease. Alzheimers Dementia 2(2):99–109Google Scholar
  54. Wang H, Ma J, Tan Y, Wang Z, Sheng C, Chen S, Ding J (2010) Amyloid-beta1-42 induces reactive oxygen species-mediated autophagic cell death in U87 and SH-SY5Y cells. J Alzheimers Dis 21(2):597–610CrossRefPubMedGoogle Scholar
  55. Wolf BB, Schuler M, Echeverri F, Green DR (1999) Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. J Biol Chem 274(43):30651–30656CrossRefPubMedGoogle Scholar
  56. Wu D, Zhang X, Zhao M, Zhou AL (2015) The role of the TLR4/NF-kappaB signaling pathway in Abeta accumulation in primary hippocampal neurons. Sheng Li Xue Bao 67(3):319–328PubMedGoogle Scholar
  57. Xu J, Stanislaus S, Chinookoswong N, Lau YY, Hager T, Patel J, Ge H, Weiszmann J, Lu SC, Graham M, Busby J, Hecht R, Li YS, Li Y, Lindberg R, Veniant MM (2009) Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models—association with liver and adipose tissue effects. Am J Physiol Endocrinol Metab 297(5):E1105–E1114CrossRefPubMedGoogle Scholar
  58. Xu C, Liu J, Hsu LC, Luo Y, Xiang R, Chuang TH (2011) Functional interaction of heat shock protein 90 and Beclin 1 modulates Toll-like receptor-mediated autophagy. FASEB J 25(8):2700–2710CrossRefPubMedPubMedCentralGoogle Scholar
  59. Yu Y, Bai F, Wang W, Liu Y, Yuan Q, Qu S, Zhang T, Tian G, Li S, Li D, Ren G (2015) Fibroblast growth factor 21 protects mouse brain against D-galactose induced aging via suppression of oxidative stress response and advanced glycation end products formation. Pharmacol Biochem Behav 133(Supplement C):122–131CrossRefPubMedGoogle Scholar
  60. Zhang X, Yeung DCY, Karpisek M, Stejskal D, Zhou Z-G, Liu F, Wong RLC, Chow W-S, Tso AWK, Lam KSL, Xu A (2008) Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 57(5):1246–1253CrossRefPubMedGoogle Scholar
  61. Zhang X, Jiang W, Zhou AL, Zhao M, Jiang DR (2017) Inhibitory effect of oxymatrine on hepatocyte apoptosis via TLR4/PI3K/Akt/GSK-3beta signaling pathway. World J Gastroenterol 23(21):3839–3849CrossRefPubMedPubMedCentralGoogle Scholar
  62. Zilberter Y (2012) Understanding how the brain ensures its energy supply. Front Neuroenerg 4:9Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physiology, School of MedicineIran University of Medical SciencesTehranIran
  2. 2.Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyAustralia
  3. 3.Institute of Biochemistry and Biophysics (IBB)University of TehranTehranIran

Personalised recommendations