Neurotoxicity Research

, Volume 34, Issue 3, pp 363–374 | Cite as

Perinatal Glyphosate-Based Herbicide Exposure in Rats Alters Brain Antioxidant Status, Glutamate and Acetylcholine Metabolism and Affects Recognition Memory

  • Cristina Eugenia GallegosEmail author
  • Carlos Javier Baier
  • Mariana Bartos
  • Cristina Bras
  • Sergio Domínguez
  • Nina Mónaco
  • Fernanda Gumilar
  • María Sofía Giménez
  • Alejandra Minetti


Glyphosate-based herbicides (Gly-BHs) lead the world pesticide market. Although are frequently promoted as safe and of low toxicity, several investigations question its innocuousness. Previously, we described that oral exposure of rats to a Gly-BH during pregnancy and lactation decreased locomotor activity and anxiety in the offspring. The aim of the present study was to evaluate the mechanisms of neurotoxicity of this herbicide. Pregnant Wistar rats were supplied orally with 0.2 and 0.4% of Gly-BH (corresponding to 0.65 and 1.30 g/l of pure Gly, respectively) from gestational day (GD) 0, until weaning (postnatal day, PND, 21). Oxidative stress markers were determined in whole brain homogenates of PND90 offspring. The activity of acetylcholinesterase (AChE), transaminases, and alkaline phosphatase (AP) were assessed in prefrontal cortex (PFC), striatum, and hippocampus. Recognition memory was evaluated by the novel object recognition test. Brain antioxidant status was altered in Gly-BH-exposed rats. Moreover, AChE and transaminases activities were decreased and AP activity was increased in PFC, striatum and hippocampus by Gly-BH treatment. In addition, the recognition memory after 24 h was impaired in adult offspring perinatally exposed to Gly-BH. The present study reveals that exposure to a Gly-BH during early stages of rat development affects brain oxidative stress markers as well as the activity of enzymes involved in the glutamatergic and cholinergic systems. These alterations could contribute to the neurobehavioral variations reported previously by us, and to the impairment in recognition memory described in the present work.


Glyphosate-containing herbicides Pregnancy and lactation Oxidative stress Transaminases AChE Recognition memory 



The authors wish to thank Wienner Laboratories for the kind donation of the diagnostic kits.

Funding Information

This research was supported by a grant from Secretaría General de Ciencia y Tecnología of Universidad Nacional del Sur (24/B224).


  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefGoogle Scholar
  2. Akinrinade ID, Memudu AE, Ogundele OM (2015) Fluoride and aluminium disturb neuronal morphology, transport functions, cholinesterase, lysosomal and cell cycle activities. Pathophysiology 22:105–115. CrossRefPubMedGoogle Scholar
  3. Astiz M, de Alaniz MJ, Marra CA (2009a) Antioxidant defense system in rats simultaneously intoxicated with agrochemicals. Environ Toxicol Pharmacol 28:465–473. CrossRefPubMedGoogle Scholar
  4. Astiz M, de Alaniz MJ, Marra CA (2009b) Effect of pesticides on cell survival in liver and brain rat tissues. Ecotoxicol Environ Saf 72:2025–2032. CrossRefPubMedGoogle Scholar
  5. Bai X, Zhang C, Chen A, Liu W, Li J, Sun Q, Wang H (2016) Protective effect of edaravone on glutamate-induced neurotoxicity in spiral ganglion neurons. Neural Plast 2016:4034218. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Baier CJ, Gallegos CE, Raisman-Vozari R, Minetti A (2017) Behavioral impairments following repeated intranasal glyphosate-based herbicide administration in mice. Neurotoxicol Teratol.
  7. Balali-Mood M, Saber H (2012) Recent advances in the treatment of organophosphorous poisonings. Iran J Med Sci 37:74–91PubMedPubMedCentralGoogle Scholar
  8. Bannerman DM, Rawlins JNP, McHugh SB, Deacon RMJ, Yee BK, Bast T, Zhang WN, Pothuizen HHJ, Feldon J (2004) Regional dissociations within the hippocampus—memory and anxiety. Neurosci Biobehav Rev 28:273–283. CrossRefGoogle Scholar
  9. Bannerman DM, Sprengel R, Sanderson DJ, McHugh SB, Rawlins JN, Monyer H, Seeburg PH (2014) Hippocampal synaptic plasticity, spatial memory and anxiety. Nat Rev Neurosci 15:181–192. CrossRefPubMedGoogle Scholar
  10. Barbieri M, Ossato A, Canazza I, Trapella C, Borelli AC, Beggiato S, Rimondo C, Serpelloni G, Ferraro L, Marti M (2016) Synthetic cannabinoid JWH-018 and its halogenated derivatives JWH-018-Cl and JWH-018-Br impair novel object recognition in mice: behavioral, electrophysiological and neurochemical evidence. Neuropharmacology 109:254–269. CrossRefPubMedGoogle Scholar
  11. Barbosa ER, Leiros da Costa MD, Bacheschi LA, Scaff M, Leite CC (2001) Parkinsonism after glycine-derivate exposure. Mov Disord 16:565–568CrossRefGoogle Scholar
  12. Beuret CJ, Zirulnik F, Gimenez MS (2005) Effect of the herbicide glyphosate on liver lipoperoxidation in pregnant rats and their fetuses. Reprod Toxicol 19:501–504. CrossRefPubMedGoogle Scholar
  13. Borggaard OK, Gimsing AL (2008) Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag Sci 64:441–456. CrossRefPubMedGoogle Scholar
  14. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  15. Brun-Heath I, Ermonval M, Chabrol E, Xiao J, Palkovits M, Lyck R, Miller F, Couraud PO, Mornet E, Fonta C (2011) Differential expression of the bone and the liver tissue non-specific alkaline phosphatase isoforms in brain tissues. Cell Tissue Res 343:521–536. CrossRefPubMedGoogle Scholar
  16. Buchet R, Millan JL, Magne D (2013) Multisystemic functions of alkaline phosphatases. Methods Mol Biol 1053:27–51. CrossRefPubMedGoogle Scholar
  17. Casida JE (2017) Organophosphorus xenobiotic toxicology. Annu Rev Pharmacol Toxicol 57:309–327. CrossRefPubMedGoogle Scholar
  18. Cattaneo R, Clasen B, Loro VL, de Menezes CC, Pretto A, Baldisserotto B, Santi A, de Avila LA (2011) Toxicological responses of Cyprinus carpio exposed to a commercial formulation containing glyphosate. Bull Environ Contam Toxicol 87:597–602. CrossRefPubMedGoogle Scholar
  19. Cattani D, de Liz Oliveira Cavalli VL, Heinz Rieg CE, Domingues JT, Dal-Cim T, Tasca CI, Mena Barreto Silva FR, Zamoner A (2014) Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: involvement of glutamate excitotoxicity. Toxicology 320:34–45. CrossRefPubMedGoogle Scholar
  20. Cattani D, Cesconetto PA, Tavares MK, Parisotto EB, de Oliveira PA, Rieg CEH, Leite MC, Prediger RDS, Wendt NC, Razzera G, Filho DW, Zamoner A (2017) Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring: implication of glutamate excitotoxicity and oxidative stress. Toxicology 387:67–80. CrossRefPubMedGoogle Scholar
  21. Chong ZZ, Li F, Maiese K (2005) Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 75:207–246. CrossRefPubMedGoogle Scholar
  22. Cruz T, Gleizes M, Balayssac S, Mornet E, Marsal G, Millán JL, Malet-Martino M, Nowak LG, Gilard V, Fonta C (2017) Identification of altered brain metabolites associated with TNAP activity in a mouse model of hypophosphatasia using untargeted NMR-based metabolomics analysis. J Neurochem 140:919–940. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Daikhin Y, Yudkoff M (2000) Compartmentation of brain glutamate metabolism in neurons and glia. J Nutr 130:1026S–1031SCrossRefGoogle Scholar
  24. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105CrossRefGoogle Scholar
  25. Daruich J, Zirulnik F, Gimenez MS (2001) Effect of the herbicide glyphosate on enzymatic activity in pregnant rats and their fetuses. Environ Res 85:226–231. CrossRefPubMedGoogle Scholar
  26. Diez-Zaera M, Diaz-Hernandez JI, Hernandez-Alvarez E, Zimmermann H, Diaz-Hernandez M, Miras-Portugal MT (2011) Tissue-nonspecific alkaline phosphatase promotes axonal growth of hippocampal neurons. Mol Biol Cell 22:1014–1024. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95CrossRefGoogle Scholar
  28. El-Shenawy NS (2009) Oxidative stress responses of rats exposed to Roundup and its active ingredient glyphosate. Environ Toxicol Pharmacol 28:379–385. CrossRefPubMedGoogle Scholar
  29. Erecinska M, Silver IA (1990) Metabolism and role of glutamate in mammalian brain. Prog Neurobiol 35:245–296CrossRefGoogle Scholar
  30. Ford B, Bateman LA, Gutierrez-Palominos L, Park R, Nomura DK (2017) Mapping proteome-wide targets of glyphosate in mice. Cell Chem Biol 24:133–140. CrossRefPubMedGoogle Scholar
  31. Gallegos CE, Bartos M, Bras C, Gumilar F, Antonelli MC, Minetti A (2016) Exposure to a glyphosate-based herbicide during pregnancy and lactation induces neurobehavioral alterations in rat offspring. Neurotoxicology 53:20–28. CrossRefPubMedGoogle Scholar
  32. Garber JC, Barbee RW, Bielitzki JT, Clayton LA, Donovan JC, Hendriksen CFM, Kohn DF, Lipman NS, Locke PA, Melcher J, Quimby FW, Turner PV, Wood GA, Würbel H (2011) Guide for the care and use of laboratory animals, 8th edn. The National Academies Press, WashingtonGoogle Scholar
  33. Glusczak L, Miron Ddos S, Moraes BS, Simoes RR, Schetinger MR, Morsch VM, Loro VL (2007) Acute effects of glyphosate herbicide on metabolic and enzymatic parameters of silver catfish (Rhamdia quelen). Comp Biochem Physiol C Toxicol Pharmacol 146:519–524. CrossRefPubMedGoogle Scholar
  34. Hassel B, Bachelard H, Jones P, Fonnum F, Sonnewald U (1997) Trafficking of amino acids between neurons and glia in vivo. Effects of inhibition of glial metabolism by fluoroacetate. J Cereb Blood Flow Metab 17:1230–1238. CrossRefPubMedGoogle Scholar
  35. Hernandez-Plata I, Giordano M, Diaz-Munoz M, Rodriguez VM (2015) The herbicide glyphosate causes behavioral changes and alterations in dopaminergic markers in male Sprague-Dawley rat. Neurotoxicology 46:79–91. CrossRefPubMedGoogle Scholar
  36. Khan AM, Raina R, Dubey N, Verma PK (2017) Effect of deltamethrin and fluoride co-exposure on the brain antioxidant status and cholinesterase activity in Wistar rats. Drug Chem Toxicol 41:1–5. CrossRefGoogle Scholar
  37. Kubota T, Matsumoto H, Kirino Y (2016) Ameliorative effect of membrane-associated estrogen receptor G protein coupled receptor 30 activation on object recognition memory in mouse models of Alzheimer’s disease. J Pharmacol Sci 131:219–222. CrossRefPubMedGoogle Scholar
  38. Lago T, Davis A, Grillon C, Ernst M (2017) Striatum on the anxiety map: small detours into adolescence. Brain Res 1654:177–184. CrossRefPubMedGoogle Scholar
  39. Lajmanovich RC, Attademo AM, Peltzer PM, Junges CM, Cabagna MC (2011) Toxicity of four herbicide formulations with glyphosate on Rhinella arenarum (Anura: Bufonidae) tadpoles: B-esterases and glutathione S-transferase inhibitors. Arch Environ Contam Toxicol 60:681–689. CrossRefPubMedGoogle Scholar
  40. Larsen K, Najle R, Lifschitz A, Virkel G (2012) Effects of sub-lethal exposure of rats to the herbicide glyphosate in drinking water: glutathione transferase enzyme activities, levels of reduced glutathione and lipid peroxidation in liver, kidneys and small intestine. Environ Toxicol Pharmacol 34:811–818. CrossRefPubMedGoogle Scholar
  41. Larsen KE, Lifschitz AL, Lanusse CE, Virkel GL (2016) The herbicide glyphosate is a weak inhibitor of acetylcholinesterase in rats. Environ Toxicol Pharmacol 45:41–44. CrossRefPubMedGoogle Scholar
  42. Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71:952–958CrossRefGoogle Scholar
  43. Le Couteur DG, McLean AJ, Taylor MC, Woodham BL, Board PG (1999) Pesticides and Parkinson’s disease. Biomed Pharmacother 53:122–130. CrossRefPubMedGoogle Scholar
  44. Leger M, Quiedeville A, Bouet V, Haelewyn B, Boulouard M, Schumann-Bard P, Freret T (2013) Object recognition test in mice. Nat Protoc 8:2531–2537. CrossRefGoogle Scholar
  45. Leibowitz A, Boyko M, Shapira Y, Zlotnik A (2012) Blood glutamate scavenging: insight into neuroprotection. Int J Mol Sci 13:10041–10066. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lionetto MG, Caricato R, Calisi A, Giordano ME, Schettino T (2013) Acetylcholinesterase as a biomarker in environmental and occupational medicine: new insights and future perspectives. Biomed Res Int 2013:321213. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Marrs TC (1993) Organophosphate poisoning. Pharmacol Ther 58:51–66CrossRefGoogle Scholar
  48. Martinez MA, Ares I, Rodriguez JL, Martinez M, Martinez-Larranaga MR, Anadon A (2017) Neurotransmitter changes in rat brain regions following glyphosate exposure. Environ Res 161:212–219. CrossRefPubMedGoogle Scholar
  49. Matthews CC, Zielke HR, Wollack JB, Fishman PS (2000) Enzymatic degradation protects neurons from glutamate excitotoxicity. J Neurochem 75:1045–1052CrossRefGoogle Scholar
  50. McKenna MC, Sonnewald U, Huang X, Stevenson J, Zielke HR (1996) Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J Neurochem 66:386–393CrossRefGoogle Scholar
  51. Menendez-Helman RJ, Ferreyroa GV, dos Santos Afonso M, Salibian A (2012) Glyphosate as an acetylcholinesterase inhibitor in Cnesterodon decemmaculatus. Bull Environ Contam Toxicol 88:6–9. CrossRefPubMedGoogle Scholar
  52. Mercurio P, Flores F, Mueller JF, Carter S, Negri AP (2014) Glyphosate persistence in seawater. Mar Pollut Bull 85:385–390Google Scholar
  53. Mesnage R, Bernay B, Seralini GE (2013) Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology 313:122–128. CrossRefPubMedGoogle Scholar
  54. Millan JL (2006) Alkaline phosphatases: structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal 2:335–341. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Modesto KA, Martinez CB (2010a) Effects of Roundup Transorb on fish: hematology, antioxidant defenses and acetylcholinesterase activity. Chemosphere 81:781–787. CrossRefPubMedGoogle Scholar
  56. Modesto KA, Martinez CB (2010b) Roundup causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus. Chemosphere 78:294–299. CrossRefPubMedGoogle Scholar
  57. Mose T, Kjaerstad MB, Mathiesen L, Nielsen JB, Edelfors S, Knudsen LE (2008) Placental passage of benzoic acid, caffeine, and glyphosate in an ex vivo human perfusion system. J Toxicol Environ Health A 71:984–991. CrossRefPubMedGoogle Scholar
  58. Neill DB, Ross JF, Grossman SP (1974) Effects of lesions in the dorsal or ventral striatum on locomotor activity and on locomotor effects of amphetamine. Pharmacol Biochem Behav 2:697–702CrossRefGoogle Scholar
  59. Nishiyori Y, Nishida M, Shioda K, Suda S, Kato S (2014) Unilateral hippocampal infarction associated with an attempted suicide: a case report. J Med Case Rep 8:219. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Patel TP, Gullotti DM, Hernandez P, O'Brien WT, Capehart BP, Morrison B, Bass C, Eberwine JE, Abel T, Meaney DF (2014) An open-source toolbox for automated phenotyping of mice in behavioral tasks. Front Behav Neurosci 8:349. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Paxinos G, Watson C (2007) The Rat Brain in stereotaxic coordinates. Academic Press, San DiegoGoogle Scholar
  62. Peruzzo PJ, Porta AA, Ronco AE (2008) Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environ Pollut 156:61–66. CrossRefPubMedGoogle Scholar
  63. Pisa M, Sanberg PR, Fibiger HC (1980) Locomotor activity, exploration and spatial alternation learning in rats with striatal injections of kainic acid. Physiol Behav 24:11–19CrossRefGoogle Scholar
  64. Poulsen MS, Rytting E, Mose T, Knudsen LE (2009) Modeling placental transport: correlation of in vitro BeWo cell permeability and ex vivo human placental perfusion. Toxicol in Vitro 23:1380–1386. CrossRefPubMedGoogle Scholar
  65. Rebai O, Belkhir M, Boujelben A, Fattouch S, Amri M (2017) Morus alba leaf extract mediates neuroprotection against glyphosate-induced toxicity and biochemical alterations in the brain. Environ Sci Pollut Res Int 24:9605–9613. CrossRefPubMedGoogle Scholar
  66. Richardson JR, Roy A, Shalat SL, von Stein RT, Hossain MM, Buckley B, Gearing M, Levey AI, German DC (2014) Elevated serum pesticide levels and risk for Alzheimer disease. JAMA Neurol 71:284–290. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Solomon KR (2016) Glyphosate in the general population and in applicators: a critical review of studies on exposures. Crit Rev Toxicol 46:21–27. CrossRefPubMedGoogle Scholar
  68. Solomon KR, Thompson DG (2003) Ecological risk assessment for aquatic organisms from over-water uses of glyphosate. J Toxicol Environ Health B Crit Rev 6:289–324. CrossRefPubMedGoogle Scholar
  69. Thapa S, Lv M, Xu H (2017) Acetylcholinesterase: a primary target for drugs and insecticides. Mini Rev Med Chem 17:1665–1676. CrossRefPubMedGoogle Scholar
  70. Thierry AM, Jay TM, Pirot S, Mantz J, Godbout R, Glowinski J (1994) Influence of afferent systems on the activity of the rat prefrontal cortex: electrophysiological and pharmacological characterization. In: Thierry AM, Glowinski J, Goldman-Rakic PS, Christen Y (eds) Motor and cognitive functions of the prefrontal cortex. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg, pp 35–50CrossRefGoogle Scholar
  71. Torres FV, Hansen F, Locks-Coelho LD (2013) Increase of extracellular glutamate concentration increases its oxidation and diminishes glucose oxidation in isolated mouse hippocampus: reversible by TFB-TBOA. J Neurosci Res 91:1059–1065. CrossRefPubMedGoogle Scholar
  72. US-EPA (2011) Edition of the Drinking Water Standards and Health Advisories. Office of Water US Environmental Protection Agency, Washington, DC (EPA 820-R-11-002)Google Scholar
  73. Vardy ER, Kellett KA, Cocklin SL, Hooper NM (2012) Alkaline phosphatase is increased in both brain and plasma in Alzheimer’s disease. Neurodegener Dis 9:31–37. CrossRefPubMedGoogle Scholar
  74. Vereecken H (2005) Mobility and leaching of glyphosate: a review. Pest Manag Sci 61:1139–1151. CrossRefPubMedGoogle Scholar
  75. Vishnoi S, Raisuddin S, Parvez S (2016) Glutamate excitotoxicity and oxidative stress in epilepsy: modulatory role of melatonin. J Environ Pathol Toxicol Oncol 35:365–374. CrossRefPubMedGoogle Scholar
  76. Voorhees JR, Rohlman DS, Lein PJ, Pieper AA (2016) Neurotoxicity in preclinical models of occupational exposure to organophosphorus compounds. Front Neurosci 10:590. CrossRefPubMedGoogle Scholar
  77. Wang G, Fan XN, Tan YY, Cheng Q, Chen SD (2011) Parkinsonism after chronic occupational exposure to glyphosate. Parkinsonism Relat Disord 17:486–487. CrossRefPubMedGoogle Scholar
  78. Williams GM, Kroes R, Munro IC (2000) Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans Regul Toxicol Pharmacol 31:117–165Google Scholar
  79. Yamashita M, Sasaki M, Mii K, Tsuzuki M, Takakura K, Yoshinoya S, Ohkubo A (1989) Measurement of serum alkaline phosphatase isozyme I in brain-damaged patients. Neurol Med Chir (Tokyo) 29:995–998CrossRefGoogle Scholar
  80. Zaganas I, Kapetanaki S, Mastorodemos V, Kanavouras K, Colosio C, Wilks MF, Tsatsakis AM (2013) Linking pesticide exposure and dementia: what is the evidence? Toxicology 307:3–11. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Cristina Eugenia Gallegos
    • 1
    Email author
  • Carlos Javier Baier
    • 2
  • Mariana Bartos
    • 1
  • Cristina Bras
    • 1
  • Sergio Domínguez
    • 1
  • Nina Mónaco
    • 1
  • Fernanda Gumilar
    • 1
  • María Sofía Giménez
    • 3
  • Alejandra Minetti
    • 1
  1. 1.Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y FarmaciaUniversidad Nacional del Sur (UNS)-CONICETBahía BlancaArgentina
  2. 2.Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y FarmaciaUniversidad Nacional del Sur (UNS)-CONICETBahía BlancaArgentina
  3. 3.Departamento de Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y FarmaciaUniversidad Nacional de San Luis, IMIBIO-SL, CONICETSan LuisArgentina

Personalised recommendations