Neurotoxicity Research

, Volume 34, Issue 1, pp 164–172 | Cite as

Glycotoxins: Dietary and Metabolic Origins; Possible Amelioration of Neurotoxicity by Carnosine, with Special Reference to Parkinson’s Disease

  • Alan R. HipkissEmail author


There is a strong association between neurodegeneration and protein glycation; possible origins of neurotoxic glycated protein, also called glycotoxins, include (i) diet (i.e., proteins cooked at high temperatures), (ii) protein glycation in the gut, and (iii) intracellular reaction of proteins with deleterious aldehydes, especially methylglyoxal (MG). It is likely that excessive glycolysis provokes increased generation of dihydroxyacetone phosphate which decomposes into MG due to activity-induced deamidation of certain asparagine residues in the glycolytic enzyme triose-phosphate isomerase (TPI). It is suggested that, following hyperglycemia, erythrocytes (i) possibly participate in MG distribution throughout the body and (ii) could provide a source of glycated alpha-synuclein which also accumulates in PD brains as Lewy bodies. The dipeptide carnosine, recently shown to be present in erythrocytes, could help to protect against MG reactivity by scavenging the reactive bicarbonyl, especially if glyoxalase activity is insufficient, as often occurs during aging. By reacting with MG, carnosine may also prevent generation of the neurotoxin 1-acetyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (ADTIQ), which accumulates in PD and diabetic brains. It is suggested that carnosine’s therapeutic potential could be explored via nasal administration in order to avoid the effects of serum carnosinase. The possibility that some glycated proteins (e.g., alpha-synuclein) could possess prion-like properties is also considered.


Glycation Methylglyoxal Triose-phosphate isomerase Carnosine Erythrocytes Glycolysis Diet Prion Alpha-synuclein 


  1. Abate G, Marziano M, Rungratanawanich W, Memo M, Uberti D (2017) Nutrition and AGE-ing: focusing on Alzheimer’s disease. Oxidative Med Cell Longev 2017:7039816–7039810. CrossRefGoogle Scholar
  2. Adolphe JL, Drew MD, Huang Q, Silver TI, Weber LP (2012) Postprandial impairment of flow-mediated dilation and elevated methylglyoxal after simple but not complex carbohydrate consumption in dogs. Nutr Res 32(4):278–284. PubMedCrossRefGoogle Scholar
  3. Afshin-Majd S, Khalili M, Roghani M, Mehranmehr N, Baluchnejadmojarad T (2015) Carnosine exerts neuroprotective effect against 6-hydroxydopamine toxicity in hemiparkinsonian rat. Mol Neurobiol 51(3):1064–1070. PubMedCrossRefGoogle Scholar
  4. Alhamdani MS, Al-Kassir AH, Abbas FK, Jaleel NA, Al-Taee MF (2007) Antiglycation and antioxidant effect of carnosine against glucose degradation products in peritoneal mesothelial cells. Nephron Clin Pract 107:26–34CrossRefGoogle Scholar
  5. Allaman I, Bélanger M, Magistretti PJ (2015) Methylglyoxal, the dark side of glycolysis. Neurosci 9:23. CrossRefGoogle Scholar
  6. Aloisi A, Barca A, Romano S, Guerrieri C, Storelli R, Rinaldi TV (2013) Anti-aggregating effect of the naturally occurring dipeptide carnosine on abeta1-42 fibril formation. PLoS One 8(7):e68159. PubMedPubMedCentralCrossRefGoogle Scholar
  7. Angoorani P, Ejtahed HS, Mirmiran P, Mirzaei S, Azizi F (2016) Dietary consumption of advanced glycation end products and risk of metabolic syndrome. Int J Food Sci Nutr 67(2):170–176. PubMedCrossRefGoogle Scholar
  8. Ansurudeen I, Sunkari VG, Grünler J, Peters V, Schmitt CP, Catrina SB, Brismar K, Forsberg EA (2012) Carnosine enhances diabetic wound healing in the db/db mouse model of type 2 diabetes. Amino Acids 43(1):127–134. PubMedCrossRefGoogle Scholar
  9. Antikainen H, Driscoll M, Haspel G, Dobrowolski R (2017) TOR-mediated regulation of metabolism in aging. Aging Cell 16(6):1219–1233. PubMedPubMedCentralCrossRefGoogle Scholar
  10. Aruoma OI, Laughton MJ, Halliwell B (1989) Carnosine, homocarnosine and anserine: could they act as antioxidants in vivo? Biochem J 264(3):863–869. PubMedPubMedCentralCrossRefGoogle Scholar
  11. Attanasio F, Convertino M, Magno A, Caflisch A, Corazza A, Haridas H, Esposito G, Cataldo S, Pignataro B, Milardi D, Rizzarelli E (2013) Carnosine inhibits Aβ(42) aggregation by perturbing the H-bond network in and around the central hydrophobic cluster. Chembiochem 14(5):583–592. PubMedCrossRefGoogle Scholar
  12. Auburger G, Kurz A (2011) The role of glyoxalases for sugar stress and aging, with relevance for dyskinesia, anxiety, dementia and Parkinson’s disease. Aging (Albany NY) 3(1):5–9. CrossRefGoogle Scholar
  13. Bae ON, Serfozo K, Baek SH, Lee KY, Dorrance A, Rumbeiha W, Fitzgerald SD, Farooq MU, Naravelta B, Bhatt A, Majid A (2013) Safety and efficacy evaluation of carnosine, an endogenous neuroprotective agent for ischemic stroke. Stroke 44(1):205–212. PubMedCrossRefGoogle Scholar
  14. Baek SH, Noh AR, Kim KA, Akram M, Shin YJ, Kim ES, Yu SW, Majid A, Bae ON (2014) Modulation of mitochondrial function and autophagy mediates carnosine neuroprotection against ischemic brain damage. Stroke 45(8):2438–2443. PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bains Y, Gugliucci A (2017) Ilex paraguariensis and its main component chlorogenic acid inhibit fructose formation of advanced glycation endproducts with amino acids at conditions compatible with those in the digestive system. Fitoterapia 117:6–10. PubMedCrossRefGoogle Scholar
  16. Bala KA, Doğan M, Mutluer T, Kaba S, Aslan O, Balahoroğlu R, Çokluk E, Üstyol L, Kocaman S (2016) Plasma amino acid profile in autism spectrum disorder (ASD). Plasma amino acid profile in autism spectrum disorder (ASD). Eur Rev Med Pharmacol 20:923–929Google Scholar
  17. Bao Y, Ding S, Cheng J, Liu Y, Wang B, Xu H, Shen Y, Lyu J (2016) Carnosine inhibits the proliferation of human cervical gland carcinoma cells through inhibiting both mitochondrial bioenergetics and glycolysis pathways and retarding cell cycle progression. Integr Cancer Ther 1:1534735416684551. CrossRefGoogle Scholar
  18. Baraniuk JN, El-Amin S, Corey R, Rayhan R, Timbol C (2013) Carnosine treatment for gulf war illness: a randomized controlled trial. Glob J Health Sci 5(3):69–81. PubMedPubMedCentralCrossRefGoogle Scholar
  19. Barski OA, Xie Z, Baba SP, Sithu SD, Agarwal A, Cai J, Bhatnagar A, Srivastava S (2013) Dietary carnosine prevents early atherosclerotic lesion formation in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 33(6):1162–1170. PubMedCrossRefGoogle Scholar
  20. Baye E, Ukropcova B, Ukropec J, Hipkiss A, Aldini G, de Courten B (2016) Physiological and therapeutic effects of carnosine on cardiometabolic risk and disease. Amino Acids 48(5):1131–1149. PubMedCrossRefGoogle Scholar
  21. Bingül İ, Yılmaz Z, Aydın AF, Çoban J, Doğru-Abbasoğlu S, Uysal M. 2017. Antiglycation and anti-oxidant efficiency of carnosine in the plasma and liver of aged rats. Geriatr Gerontol Int. doi:
  22. Bispo VS, de Arruda Campos IP, Di Mascio P, Medeiros MH (2016) Structural elucidation of a carnosine-acrolein adduct and its quantification in human urine samples. Sci Rep 6(1):19348. PubMedPubMedCentralCrossRefGoogle Scholar
  23. Boldyrev AA, Gallant SC, Sukhich GT (1999) Carnosine, the protective, anti-aging peptide. Biosci Rep 19(6):581–587. PubMedCrossRefGoogle Scholar
  24. Boldyrev A, Fedorova T, Stepanova M, Dobrotvorskaya I, Kozlova E, Boldanova N, Bagyeva G, Ivanova-Smolenskaya I, Illarioshkin S (2008) Carnosine [corrected] increases efficiency of DOPA therapy of Parkinson’s disease: a pilot study. [Erratum appears in Rejuvenation Res. 11:988]. Rejuvenation Res 11(4):821–827. PubMedCrossRefGoogle Scholar
  25. Boldyrev AA, Aldini G, Derave W (2013) Physiology and pathophysiology of carnosine. Physiol Rev 93(4):1803–1845. PubMedCrossRefGoogle Scholar
  26. Bonfanti L, Peretto P, De Marchis S, Fasolo A (1999) Carnosine-related dipeptides in the mammalian brain. Prog Neurobiol 59(4):333–353. PubMedCrossRefGoogle Scholar
  27. Brown BE, Kim CH, Torpy FR, Bursill CA, McRobb LS, Heather AK, Davies MJ, van Reyk DM (2014) Supplementation with carnosine decreases plasma triglycerides and modulates atherosclerotic plaque composition in diabetic apo E(−/−) mice. Atherosclerosis 232(2):403–409. PubMedCrossRefGoogle Scholar
  28. Cai W, Uribarri J, Zhu L, Chen X, Swamy S, Zhao Z, Grosjean F, Simonaro C, Kuchel GA, Schnaider-Beeri M, Woodward M, Striker GE, Vlassara H (2014) Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc Natl Acad Sci U S A 111(13):4940–4945. PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chaleckis R, Murakami I, Takada J, Kondoh H, Yanagida M (2016) Individual variability in human blood metabolites identifies age-related differences. Proc Natl Acad Sci U S A 113(16):4252–4259. PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chandra R, Hiniker A, Kuo YM, Nussbaum RL, Liddle RA. 2017. α-Synuclein in gut endocrine cells and its implications for Parkinson’s disease. JCI Insight. 2. doi:
  31. Chengappa JKN, Turkin SR, DeSanti S, Bowie SCR, Brar JS, Schlicht PJ, Murphy SL, Hetrick ML, Bilder R, Fleet D (2012) A preliminary, randomized, double-blind, placebo-controlled trial of L-carnosine to improve cognition in schizophrenia. Schizophr Res 142(1-3):145–152. PubMedCrossRefGoogle Scholar
  32. Chez MG, Buchanan CP, Aimonovitch MC, Becker M, Schaefer K, Black C, Komen J (2002) Double-blind, placebo-controlled study of L-carnosine supplementation in children with autistic spectrum disorders. J Child Neurol 17:833–837PubMedCrossRefGoogle Scholar
  33. Chuang CH, Hu ML (2008) L-carnosine inhibits metastasis of SK-Hep-1 cells by inhibition of matrix metaoproteinase-9 expression and induction of an antimetastatic gene, nm23-H1. Nutr Cancer 60(4):526–533. PubMedCrossRefGoogle Scholar
  34. Ciechanover A, Kwon YT (2015) Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 47(3):e147. PubMedPubMedCentralCrossRefGoogle Scholar
  35. Corona C, Frazzini V, Silvestri E, Lattanzio R, La Sorda R, Piantelli M, Canzoniero LM, Ciavardelli D, Rizzarelli E, Sensi SL (2011) Effects of dietary supplementation of carnosine on mitochondrial dysfunction, amyloid pathology, and cognitive deficits in 3xTg-AD mice. PLoS One 6(3):e17971. PubMedPubMedCentralCrossRefGoogle Scholar
  36. da Silva Bispo V, Di Mascio P, Medeiros M (2014) Quantification of carnosine-aldehyde adducts in human urine. Free Radic Biol Med 75(Suppl 1):S27. PubMedCrossRefGoogle Scholar
  37. Davies SS, Zhang LS (2017) Reactive carbonyl species scavengers—novel therapeutic approaches for chronic diseases. Curr Pharmacol Rep 3(2):51–67. PubMedPubMedCentralCrossRefGoogle Scholar
  38. Davis CK, Laud PJ, Bahor Z, Rajanikant GK, Majid A (2016) Systematic review and stratified meta-analysis of the efficacy of carnosine in animal models of ischemic stroke. J Cereb Blood Flow Metab 36(10):1686–1694. PubMedPubMedCentralCrossRefGoogle Scholar
  39. Deng Y, Zhang Y, Li Y, Xiao S, Song D, Qing H, Li Q, Rajput AH (2012) Occurrence and distribution of salsolinol-like compound, 1-acetyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (ADTIQ) in parkinsonian brains. J Neural Transm (Vienna) 119(4):435–441. CrossRefGoogle Scholar
  40. Desai K, Wu L (2007) Methylglyoxal and advanced glycation endproducts: new therapeutic horizons? Recent Pat Cardiovasc Drug Discov 2(2):89–99. PubMedCrossRefGoogle Scholar
  41. Desai KM, Chang T, Wang H, Banigesh A, Dhar A, Liu J, Untereiner A, Wu L (2010a) Oxidative stress and aging: is methylglyoxal the hidden enemy? Can J Physiol Pharmacol 88(3):273–284. PubMedCrossRefGoogle Scholar
  42. Desai KM, Chang T, Wang H, Banigesh A, Dhar A, Liu J, Untereiner A, Wu L (2010b) Oxidative stress and aging: is methylglyoxal the hidden enemy? Can J Physiol Pharmacol 88(3):273–284. PubMedCrossRefGoogle Scholar
  43. Di Pino A, Currenti W, Urbano F, Scicali R, Piro S, Purrello F, Rabuazzo AM (2017) High intake of dietary advanced glycation end-products is associated with increased arterial stiffness and inflammation in subjects with type 2 diabetes. Nutr Metab Cardiovasc Dis 8Google Scholar
  44. Ding M, Jiao G, Shi H, Chen Y (2017) Investigations on in vitro anti-carcinogenic potential of L-carnosine in liver cancer cells. Cytotechnology.
  45. Dunn L, Allen GF, Mamais A, Ling H, Li A, Duberley KE, Hargreaves IP, Pope S, Holton JL, Lees A, Heales SJ, Bandopadhyay R (2014) Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease. Neurobiol Aging 35(5):1111–1115. PubMedPubMedCentralCrossRefGoogle Scholar
  46. Egawa T, Tsuda S, Goto A, Ohno Y, Yokoyama S, Goto K, Hayashi T (2017) Potential involvement of dietary advanced glycation end products in impairment of skeletal muscle growth and muscle contractile function in mice. Br J Nutr 117(01):21–29. PubMedCrossRefGoogle Scholar
  47. Ejtahed HS, Angoorani P, Asghari G, Mirmiran P, Azizi F (2016) Dietary advanced glycation end products and risk of chronic kidney disease. J Ren Nutr 26(5):308–314. PubMedCrossRefGoogle Scholar
  48. El-Ansary A, Shaker GH, El-Gezeery AR, Al-Ayadhi L (2013) The neurotoxic effect of clindamycin-induced gut bacterial imbalance and orally administered propionic acid on DNA damage assessed by the comet assay: protective potency of carnosine and carnitine. Gut Pathog 5(1):9. PubMedPubMedCentralCrossRefGoogle Scholar
  49. Fang EF, Lautrup S, Hou Y, Demarest TG, Croteau DL, Mattson MP, Bohr VA (2017) NAD+ in aging: molecular mechanisms and translational implications. Trends Mol Med 23(10):899–916. PubMedCrossRefGoogle Scholar
  50. Fleming TH, Theilen TM, Masania J, Wunderle M, Karimi J, Vittas S, Bernauer R, Bierhaus A, Rabbani N, Thornalley PJ, Kroll J, Tyedmers J, Nawrotzki R, Herzig S, Brownlee M, Nawroth PP (2013) Aging-dependent reduction in glyoxalase 1 delays wound healing. Gerontology 59(5):427–437. PubMedCrossRefGoogle Scholar
  51. Fujii K, Abe K, Kadooka K, Matsumoto T, Katakura Y (2017) Carnosine activates the CREB pathway in Caco-2 cells. Cytotechnology 69(3):523–527. PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gaur U, Tu J, Li D, Gao Y, Lian T, Sun B, Yang D, Fan X, Yang M (2017) Molecular evolutionary patterns of NAD+/Sirtuin aging signaling pathway across taxa. PLoS One 12(8):e0182306. PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gracy RW, Talent JM, Zvaigzne AI (1998) Molecular wear and tear leads to terminal marking and the unstable isoforms of aging. J Exp Zool 282(1-2):18–27.<18::AID-JEZ5>3.0.CO;2-Q PubMedCrossRefGoogle Scholar
  54. Gugliucci A (2017) Formation of fructose-mediated advanced glycation end products and their roles in metabolic and inflammatory diseases. Adv Nutr 8(1):54–62. PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hajizadeh-Zaker R, Ghajar A, Mesgarpour B, Afarideh M, Mohammadi MR, Akhondzadeh S (2017) L-carnosine as an adjunctive therapy to risperidone in children with autistic disorder: a randomized, double-blind, placebo-controlled trial. J Child Adolesc Psychopharmacol 13. doi:
  56. Hipkiss, AR (2015) Possible benefit of dietary carnosine towards depressive disorders. Aging Dis 6(5):300–303. PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hipkiss AR (2005a) Glycation, ageing and carnosine: are carnivorous diets beneficial? Mech Ageing Dev 126(10):1034–1039. PubMedCrossRefGoogle Scholar
  58. Hipkiss AR (2005b) Could carnosine suppress zinc-mediated proteasome inhibition and neurodegeneration? Therapeutic potential of a non-toxic but non-patentable dipeptide. Biogerontology 6(2):147–149. PubMedCrossRefGoogle Scholar
  59. Hipkiss AR (2006) On the mechanisms of ageing suppression by dietary restriction—is persistent glycolysis the problem? Mech Ageing Dev 127(1):8–15. PubMedCrossRefGoogle Scholar
  60. Hipkiss AR (2010) NAD(+) and metabolic regulation of age-related proteoxicity: a possible role for methylglyoxal? Exp Gerontol 45(6):395–399. PubMedCrossRefGoogle Scholar
  61. Hipkiss AR (2011) Energy metabolism and ageing regulation: metabolically driven deamidation of triosephosphate isomerase may contribute to proteostatic dysfunction. Ageing Res Rev 10(4):498–502. PubMedCrossRefGoogle Scholar
  62. Hipkiss AR (2016) Activity-induced deamidation of triose-phosphate isomerase may explain the deleterious effects of excessive glucose consumption. Int J Diabetes Clin Res 3:066CrossRefGoogle Scholar
  63. Hipkiss AR, Michaelis J, Syrris P (1995) Non-enzymatic glycosylation of the dipeptide L-carnosine, a potential anti-protein-cross-linking agent. FEBS Lett 371(1):81–85. PubMedCrossRefGoogle Scholar
  64. Hipkiss AR, Worthington VC, Himsworth DT, Herwig W (1998a) Protective effects of carnosine against protein modification mediated by malondialdehyde and hypochlorite. Biochim Biophys Acta 1380(1):46–54. PubMedCrossRefGoogle Scholar
  65. Hipkiss AR, Preston JE, Himsworth DT, Worthington VC, Keown M, Michaelis J, Lawrence J, Mateen A, Allende L, Eagles PA, Abbott NJ (1998b) Pluripotent protective effects of carnosine, a naturally occurring dipeptide. Ann New York Acad Sci 854(1 TOWARDS PROLO):37–53. CrossRefGoogle Scholar
  66. Hisatsune T, Kaneko J, Kurashige H, Cao Y, Satsu H, Totsuka M, Katakura Y, Imabayashi E, Matsuda H (2015) Effect of anserine/carnosine supplementation on verbal episodic memory in elderly people. J Alzheimers Dis 50(1):149–159. PubMedCentralCrossRefGoogle Scholar
  67. Hoffman JR, Ostfield I, Stout JR, Harris RC, Moran DS (2015). Beta-alanine supplementation diets enhance behavioral resilience to stress exposure in an animal model of PTSD. Amino Acids 47:1247–1257.
  68. Holliday R, McFarland GA (1996) Inhibition of the growth of transformed and neoplastic cells by the dipeptide carnosine. Br J Cancer 73(8):966–971. PubMedPubMedCentralCrossRefGoogle Scholar
  69. Imai SI, Guarente L (2016) It takes two to tango: NAD+ and sirtuins in aging/longevity control. NPJ Aging Mech Dis 2(1):16017. PubMedPubMedCentralCrossRefGoogle Scholar
  70. Inagi R (2014) Glycative stress and glyoxalase in kidney disease and aging. Biochem Soc Trans 42(2):457–460. PubMedCrossRefGoogle Scholar
  71. Ingram DK, Roth GS (2015) Calorie restriction mimetics: can you have your cake and eat it, too? Ageing Res Rev 20:46–62. PubMedCrossRefGoogle Scholar
  72. Iovine B, Iannella ML, Nocella F, Pricolo MR, Bevilacqua MA (2012) Carnosine inhibits KRAS-mediated HCT116 proliferation by affecting ATP and ROS production. Cancer Lett 315(2):122–128. PubMedCrossRefGoogle Scholar
  73. Ishida YI, Kayama T, Kibune Y, Nishimoto S, Koike S, Suzuki T, Horiuchi Y, Miyashita M, Itokawa M, Arai M, Ogasawara Y (2017) Identification of an argpyrimidine-modified protein in human red blood cells from schizophrenic patients: a possible biomarker for diseases involving carbonyl stress. Biochem Biophys Res Commun 493(1):573–577. PubMedCrossRefGoogle Scholar
  74. Jellinger KA (2017) Multiple system atrophy: an oligodendroglioneural synucleinopathy. J Alzheimers Dis 26:1–38. CrossRefGoogle Scholar
  75. Kang JH (2012) Salsolinol, a tetrahydroisoquinoline-derived neurotoxin, induces oxidative modification of neurofilament-L protection by histidyl dipeptides. BMB Rep 45(2):114–119. PubMedCrossRefGoogle Scholar
  76. Kang JH, Kim KS (2003) Enhanced oligomerization of the alpha-synuclein mutant by the Cu,Zn-superoxide dismutase and hydrogen peroxide system. Mol Cells 15(1):87–93PubMedGoogle Scholar
  77. Kardani J, Sethi R, Roy I (2017) Nicotine slows down oligomerisation of α-synuclein and ameliorates cytotoxicity in a yeast model of Parkinson’s disease. Biochim Biophys Acta 1863(6):1454–1463. PubMedCrossRefGoogle Scholar
  78. Killinger BA, Labrie V (2017) Vertebrate food products as a potential source of prion-like alpha-synuclein. NPJ Parkinson’s disease 3(1):33. PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kim SR, Eom TK, Byun HG (2014) Inhibitory effect of the carnosine-gallic acid synthetic peptide on MMP-2 and MMP-9 in human fibrosarcoma HT1080 cells. J Pept Sci 20(9):716–724. PubMedCrossRefGoogle Scholar
  80. Kohen R, Yamamoto Y, Cundy KC, Ames BN (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci U S A 85(9):3175–3179. PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lombardi C, Carubelli V, Lazzarini V, Carubelli V, Vizzardi E, Bordonali T, Ciccarese C, Castrini AI, Dei Cas A, Nodari S, Metra M (2015) Effects of oral administration of orodispersible levo-carnosine on quality of life and exercise performance in patients with chronic heart failure. Nutrition 31(1):72–78. PubMedCrossRefGoogle Scholar
  82. Lubitz I, Ricny J, Atrakchi-Baranes D, Shemesh C, Kravitz E, Liraz-Zaltsman S, Maksin-Matveev A, Cooper I, Leibowitz A, Uribarri J, Schmeidler J, Cai W, Kristofikova Z, Ripova D, LeRoith D, Schnaider-Beeri M (2016) High dietary advanced glycation end products are associated with poorer spatial learning and accelerated Aβ deposition in an Alzheimer mouse model. Aging Cell 15(2):309–316. PubMedPubMedCentralCrossRefGoogle Scholar
  83. Luo G, Huang B, Qiu X, Xiao L, Wang N, Gao Q, Yang W, Hao L (2017) Resveratrol attenuates excessive ethanol exposure induced insulin resistance in rats via improving NAD+ /NADH ratio. Mol Nutr Food Res. 8. doi:
  84. Ma J, Bo SH, Lu XT, Xu AJ, Zhang J (2016) Protective effects of carnosine on white matter damage induced by chronic cerebral hypoperfusion. Neural Regen Res 11(9):1438–1444. PubMedPubMedCentralCrossRefGoogle Scholar
  85. Macedo LW, Cararo JH, Maravai SG, Gonçalves CL, Oliveira GM, Kist LW, Guerra Martinez C, Kurtenbach E, Bogo MR, Hipkiss AR, Streck EL, Schuck PF, Ferreira GC (2016) Acute carnosine administration increases respiratory chain complexes and citric acid cycle enzyme activities in cerebral cortex of young rats. Mol Neurobiol 53(8):5582–5590. PubMedCrossRefGoogle Scholar
  86. Marinova Z, Maercker A, Grunblatt E, Wojdacz TK, Walitza S (2017) A pilot investigation of DNA methylation modifications associated with complex posttraumatic symptoms in elderly traumatized in childhood. BMC Res Notes 10(1):752. PubMedPubMedCentralCrossRefGoogle Scholar
  87. Matsumoto J, Stewart T, Sheng L, Li N, Bullock K, Song N, Shi M, Banks WA, Zhang J (2017) Transmission of α-synuclein-containing erythrocyte-derived extracellular vesicles across the blood-brain barrier via adsorptive mediated transcytosis: another mechanism for initiation and progression of Parkinson’s disease? Acta Neuropathol Commun 5(1):71. PubMedPubMedCentralCrossRefGoogle Scholar
  88. McCarty MF, DiNicolantonio JJ (2014) β-Alanine and orotate as supplements for cardiac protection. Open Heart 1(1):e000119. PubMedPubMedCentralCrossRefGoogle Scholar
  89. McFarland GA, Holliday R (1994) Retardation of the senescence of cultured human diploid fibroblasts by carnosine. Exp Cell Res 212(2):167–175. PubMedCrossRefGoogle Scholar
  90. Ming X, Stein TP, Barnes V, Rhodes N, Guo L (2012) Metabolic perturbance in autism spectrum disorders: a metabolomics study. J Proteome Res 11(12):5856–5862. PubMedCrossRefGoogle Scholar
  91. Münch G, Westcott B, Menini T, Gugliucci A (2012) Advanced glycation endproducts and their pathogenic roles in neurological disorders. Amino Acids 42(4):1221–1236. PubMedCrossRefGoogle Scholar
  92. Muronetz VI, Melnikova AK, Seferbekova ZN, Barinova KV, Schmalhausen EV (2017) Glycation, glycolysis, and neurodegenerative diseases: is there any connection? Biochemistry (Mosc) 82(8):874–886. CrossRefGoogle Scholar
  93. Nishiwaki H, Kato S, Sugamoto S, Umeda M, Morita H, Yoneta T, Takeuchi K (1999) Ulcerogenic and healing impairing actions of monochloramine in rat stomachs: effects of zinc L-carnosine, polaprezinc. J Physiol Pharmacol 50(2):183–195PubMedGoogle Scholar
  94. Ozdoğan K, Taşkın E, Dursun N (2011) Protective effect of carnosine on adriamycin-induced oxidative heart damage in rats. Anadolu Kardiyol Derg 11(1):3–10. PubMedCrossRefGoogle Scholar
  95. Pietkiewicz J, Bronowicka-Szydełko A, Dzierzba K, Danielewicz R, Gamian A (2011) Glycation of the muscle-specific enolase by reactive carbonyls: effect of temperature and the protection role of carnosine, pyridoxamine and phosphatidylserine. Protein J 30(3):149–158. PubMedCrossRefGoogle Scholar
  96. Powers SK, Nelson WB, Hudson MB (2011) Exercise-induced oxidative stress in humans: cause and consequences. Free Radic Biol Med 51(5):942–950. PubMedCrossRefGoogle Scholar
  97. Preston JE, Hipkiss AR, Himsworth DT, Romero IA, Abbott JN (1998) Toxic effects of beta-amyloid (25-35) on immortalised rat brain endothelial cell: protection by carnosine, homocarnosine and beta-alanine. Neurosci Lett 242(2):105–108. PubMedCrossRefGoogle Scholar
  98. Prusiner SB, Woerman AL, Mordes DA, Watts JC, Rampersaud R, Berry DB, Patel S, Oehler A, Lowe JK, Kravitz SN, Geschwind DH, Glidden DV, Halliday GM, Middleton LT, Gentleman SM, Grinberg LT, Giles K (2015) Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci U S A 112(38):E5308–E5317. PubMedPubMedCentralCrossRefGoogle Scholar
  99. Rabbani N, Thornalley PJ (2012) Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids 42(4):1133–1142. PubMedCrossRefGoogle Scholar
  100. Rashid I, van Reyk DM, Davies MJ (2007) Carnosine and its constituents inhibit glycation of low-density lipoproteins that promotes foam cell formation in vitro. FEBS Lett 581(5):1067–1070. PubMedCrossRefGoogle Scholar
  101. Regazzoni L, de Courten B, Garzon D, Altomare A, Marinello C, Jakubova M, Vallova S, Krumpolec P, Carini M, Ukropec J, Ukropcova B, Aldini G (2016) A carnosine intervention study in overweight human volunteers: bioavailability and reactive carbonyl species sequestering effect. Sci Rep 6(1):27224. PubMedPubMedCentralCrossRefGoogle Scholar
  102. Renner C, Asperger A, Seyffarth A, Meixensberger J, Gebhardt R, Gaunitz F (2010) Carnosine inhibits ATP production in cells from malignant glioma. Neurol Res 32(1):101–105. PubMedCrossRefGoogle Scholar
  103. Rizak JD, Ma Y, Hu X (2014) Is formaldehyde the missing link in AD pathology? The differential aggregation of amyloid-beta with APOOE isoforms in vitro. Curr Alzheimer Res 11(5):461–468PubMedCrossRefGoogle Scholar
  104. Roberts PR, Black KW, Santamauro JT, Zaloga GP (1998) Dietary peptides improve wound healing following surgery. Nutrition 14(3):266–269. PubMedCrossRefGoogle Scholar
  105. Robinson NE, Robinson AB (2004) Molecular clocks: deamidation of asparaginyl and glutaminyl residues in peptides and proteins. Althouse Press, Oregon, p 231Google Scholar
  106. Sakae K, Yanagisawa H (2014) Oral treatment of pressure ulcers with polaprezinc (zinc L-carnosine complex): 8-week open-label trial. Biol Trace Elem Res 158(3):280–288. PubMedCrossRefGoogle Scholar
  107. Sale C, Artioli GG, Gualano B, Saunders B, Hobson RM, Harris RC (2013) Carnosine: from exercise performance to health. Amino Acids 44(6):1477–1491. PubMedCrossRefGoogle Scholar
  108. Semba RD, Nicklett EJ, Ferrucci L (2010) Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci 65:963–975PubMedCrossRefGoogle Scholar
  109. Skovgaard D, Svensson RB, Scheijen J, Eliasson P, Mogensen P, Hag AM, Kjær M, Schalkwijk CG, Schjerling P, Magnusson SP, Couppé C (2017) An advanced glycation endproduct (AGE)-rich diet promotes accumulation of AGEs in Achilles tendon. Physiol Rep 5(6). doi:
  110. Son DO, Satsu H, Kiso Y, Totsuka M, Shimizu M (2008) Inhibitory effect of carnosine on interleukin-8 production in intestinal epithelial cells through translational regulation. Cytokine 42(2):265–276. PubMedCrossRefGoogle Scholar
  111. Song DW, Xin N, Xie BJ, Li YJ, Meng LY, Li HM, Schläppi M, Deng YL (2014) Formation of a salsolinol-like compound, the neurotoxin, 1-acetyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, in a cellular model of hyperglycemia and a rat model of diabetes. Int J Mol Med 33(3):736–742. PubMedCrossRefGoogle Scholar
  112. Swetha MP, Muthukumar SP (2016) Characterization of nutrients, amino acids, polyphenols and antioxidant activity of Ridge gourd (Luffa acutangula) peel. J Food Sci Technol 53(7):3122–3128. PubMedPubMedCentralCrossRefGoogle Scholar
  113. Szcześniak D, Budzeń S, Kopeć W, Rymaszewska J (2014) Anserine and carnosine supplementation in the elderly: effects on cognitive functioning and physical capacity. Arch Gerontol Geriatr 59(2):485–490. PubMedCrossRefGoogle Scholar
  114. Tajes M, Eraso-Pichot A, Rubio-Moscardó F, Guivernau B, Ramos-Fernández E, Bosch-Morató M, Guix FX, Clarimón J, Miscione GP, Boada M, Gil-Gómez G, Suzuki T, Molina H, Villà-Freixa J, Vicente R, Muñoz FJ (2014) Methylglyoxal produced by amyloid-β peptide-induced nitrotyrosination of triosephosphate isomerase triggers neuronal death in Alzheimer's disease. J Alzheimers Dis 41(1):273–288. PubMedCrossRefGoogle Scholar
  115. Tan D, Wang Y, Lo CY, Sang S, Ho CT (2008) Methylglyoxal: its presence in beverages and potential scavengers. Ann N Y Acad Sci 1126(1):72–75. PubMedCrossRefGoogle Scholar
  116. Tong Z, Han C, Qiang M, Wang W, Lv J, Zhang S, Luo W, Li H, Luo H, Zhou J, Wu B, Su T, Yang X, Wang X, Liu Y, He R, Han C, Qiang M (2015) Age-related formaldehyde interferes with DNA methyltransferase function, causing memory loss in Alzheimer’s disease. Neurobiol Aging 36(1):100–110. PubMedCrossRefGoogle Scholar
  117. Tong Z, Wang W, Luo W, Lv J, Li H, Luo H, Jia J, He R (2016) Urine formaldehyde predicts cognitive impairment in post-stroke dementia and Alzheimer’s disease. J Alzheimers Dis 55(3):1031–1038. CrossRefGoogle Scholar
  118. Tsai SJ, Kuo WW, Liu WH, Yin MC (2010) Antioxidative and anti-inflammatory protection from carnosine in the striatum of MPTP-treated mice. J Agric Food Chem 58(21):11510–11516. PubMedCrossRefGoogle Scholar
  119. Tulpule K, Dringen R (2012) Formate generated by cellular oxidation of formaldehyde accelerates the glycolytic flux in cultured astrocytes. Glia 60(4):582–593. PubMedCrossRefGoogle Scholar
  120. Tulpule K, Dringen R (2013) Formaldehyde in the brain: an overlooked player in neurodegeneration? J Neurochem 127(1):7–21. PubMedCrossRefGoogle Scholar
  121. Tulpule K, Hohnholt MC, Dringen R (2013) Formaldehyde metabolism and formaldehyde-induced stimulation of lactate and glutathione export in cultured neurons. J Neurochem 125(2):260–722. PubMedCrossRefGoogle Scholar
  122. Uchiki T, Weikel KA, Jiao W, Shang F, Caceres A, Pawlak D, Handa JT, Brownlee M, Nagaraj R, Taylor A (2012) Glycation-altered proteolysis as a pathobiologic mechanism that links dietary glycemic index, aging, and age-related disease (in nondiabetics). Aging Cell 11(1):1–13. PubMedCrossRefGoogle Scholar
  123. Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, Yong A, Striker GE, Vlassara H (2010) Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc 110(6):911–916. PubMedPubMedCentralCrossRefGoogle Scholar
  124. Uribarri J, del Castillo MD, de la Maza MP, Filip R, Gugliucci A, Luevano-Contreras C, Macías-Cervantes MH, Markowicz Bastos DH, Medrano A, Menini T, Portero-Otin M, Rojas A, Sampaio GR, Wrobel K, Wrobel K, Garay-Sevilla ME (2015) Dietary advanced glycation end products and their role in health and disease. Adv Nutr 6(4):461–473. PubMedPubMedCentralCrossRefGoogle Scholar
  125. Vicente Miranda H, El-Agnaf OM, Outeiro TF (2016) Glycation in Parkinson’s disease and Alzheimer’s disease. Mov Disord 31(6):782–790. PubMedCrossRefGoogle Scholar
  126. Vicente Miranda H, Cássio R, Correia-Guedes L, Gomes MA, Chegão A, Miranda E, Soares T, Coelho M, Rosa MM, Ferreira JJ, Outeiro TF (2017a) Posttranslational modifications of blood-derived alpha-synuclein as biochemical markers for Parkinson’s disease. Sci Rep 7(1):13713. PubMedPubMedCentralCrossRefGoogle Scholar
  127. Vicente Miranda H, Szego ÉM, Oliveira LM, Breda C, Darendelioglu E, de Oliveira RM, Ferreira DG, Gomes MA, Rott R, Oliveira M, Munari F, Enguita FJ, Simões T, Rodrigues EF, Heinrich M, Martins IC, Zamolo I, Riess O, Cordeiro C, Ponces-Freire A, Lashuel HA, Santos NC, Lopes LV, Xiang W, Jovin TM, Penque D, Engelender S, Zweckstetter M, Klucken J, Giorgini F, Quintas A, Outeiro TF (2017b) Glycation potentiates α-synuclein-associated neurodegeneration in synucleinopathies. Brain 140(5):1399–1419. PubMedCrossRefGoogle Scholar
  128. Vlassara H, Striker GE (2011) AGE restriction in diabetes mellitus: a paradigm shift. Nat Rev Endocrinol 7(9):526–539. PubMedPubMedCentralCrossRefGoogle Scholar
  129. Vlassara H, Cai W, Crandall J, Goldberg T, Oberstein R, Dardaine V, Peppa M, Rayfield EJ (2002) Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci U S A 99(24):15596–15601. PubMedPubMedCentralCrossRefGoogle Scholar
  130. West RK, Moshier E, Lubitz I, Schmeidler J, Godbold J, Cai W, Uribarri J, Vlassara H, Silverman JM, Beeri MS (2014) Dietary advanced glycation end products are associated with decline in memory in young elderly. Mech Ageing Dev 140:10–12. PubMedPubMedCentralCrossRefGoogle Scholar
  131. Xie B, Lin F, Ullah K, Peng L, Ding W, Dai R, Qing H, Deng Y (2015) A newly discovered neurotoxin ADTIQ associated with hyperglycemia and Parkinson’s disease. Biochem Biophys Res Commun 459(3):361–366. PubMedCrossRefGoogle Scholar
  132. Xue M, Rabbani N, Thornalley PJ (2011) Glyoxalase in ageing. Semin Cell Dev Biol 22(3):293–301. PubMedCrossRefGoogle Scholar
  133. Zaki MM, Abdel-Al H, Al-Sawi M (2017) Assessment of plasma amino acid profile in autism using cation-exchange chromatography with postcolumn derivatization by ninhydrin. Turk J Med Sci 47(1):260–267. PubMedCrossRefGoogle Scholar
  134. Zhang Z, Miao L, Wu X, Liu G, Peng Y, Xin X, Jiao B, Kong X (2014) Carnosine inhibits the proliferation of human gastric carcinoma cells by retarding Akt/mTOR/p70S6K signaling. J Cancer 5(5):382–389. PubMedPubMedCentralCrossRefGoogle Scholar
  135. Zhao J, Shi L, Zhang LR (2017) Neuroprotective effect of carnosine against salsolinol-induced Parkinson’s disease. Exp Ther Med 14(1):664–670. PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Aston Research Centre for Healthy Ageing (ARCHA) School of Health and Life SciencesAston UniversityBirminghamUK

Personalised recommendations