Neurotoxicity Research

, Volume 33, Issue 3, pp 580–592 | Cite as

Chronic Mild Hyperhomocysteinemia Alters Inflammatory and Oxidative/Nitrative Status and Causes Protein/DNA Damage, as well as Ultrastructural Changes in Cerebral Cortex: Is Acetylsalicylic Acid Neuroprotective?

  • Daniella de S. Moreira
  • Paula W. Figueiró
  • Cassiana Siebert
  • Caroline A. Prezzi
  • Francieli Rohden
  • Fatima C. R. Guma
  • Vanusa Manfredini
  • Angela T. S. Wyse
ORIGINAL ARTICLE
  • 97 Downloads

Abstract

Homocysteine is a sulfur-containing amino acid derived from methionine metabolism. When plasma homocysteine levels exceed 10–15 μM, there is a condition known as hyperhomocysteinemia, which occur as a result of an inborn error of methionine metabolism or by non-genetic causes. Mild hyperhomocysteinemia is considered a risk factor for development of neurodegenerative diseases. The objective of the present study was to evaluate whether acetylsalicylic acid has neuroprotective role on the effect of homocysteine on inflammatory, oxidative/nitrative stress, and morphological parameters in cerebral cortex of rats subjected to chronic mild hyperhomocysteinemia. Wistar male rats received homocysteine (0.03 μmol/g of body weight) by subcutaneous injections twice a day and acetylsalicylic acid (25 mg/Kg of body weight) by intraperitoneal injections once a day from the 30th to the 60th postpartum day. Control rats received vehicle solution in the same volume. Results showed that rats subjected to chronic mild hyperhomocysteinemia significantly increased IL-1β, IL-6, and acetylcholinesterase activity and reduced nitrite levels. Homocysteine decreased catalase activity and immunocontent and superoxide dismutase activity, caused protein and DNA damage, and altered neurons ultrastructure. Acetylsalicylic acid totally prevented the effect of homocysteine on acetylcholinesterase activity and catalase activity and immunocontent, as well as the ultrastructural changes, and partially prevented alterations on IL-1β levels, superoxide dismutase activity, sulfhydryl content, and comet assay. Acetylsalicylic acid per se increased DNA damage index. In summary, our findings showed that chronic chemically induced model of mild hyperhomocysteinemia altered some parameters and acetylsalicylic acid administration seemed to be neuroprotective, at least in part, on neurotoxicity of homocysteine.

Keywords

Homocysteine Hyperhomocysteinemia Acetylsalicylic acid Inflammation Oxidative/nitrative stress Ultrastructural changes 

Notes

Compliance with Ethical Standards

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed and experimental protocol was approved by the University’s Ethics Committee (CEUA) under the project #31436.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126.  https://doi.org/10.1016/S0076-6879(84)05016-3 PubMedCrossRefGoogle Scholar
  2. Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302(2-3):141–145.  https://doi.org/10.1016/S0304-3940(01)01636-6 PubMedCrossRefGoogle Scholar
  3. Almeida OP, Flicker L, Yeap BB, Alfonso H, McCaul K, Hankey GJ (2012) Aspirin decreases the risk of depression in older men with high plasma homocysteine. Transl Psychiatry 2(8):e151.  https://doi.org/10.1038/tp.2012.79 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Asanuma M, Nishibayashi-Asanuma S, Miyazaki I, Kohno M, Ogawa N (2001) Neuroprotective effects of non-steroidal anti-inflammatory drugs by direct scavenging of nitric oxide radicals. J Neurochem 76(6):1895–1904.  https://doi.org/10.1046/J.1471-4159.2001.00205.X PubMedCrossRefGoogle Scholar
  5. Banecka-Majkutewicz Z, Sawuła W, Kadziński L, Węgrzyn A, Banecki B (2012) Homocysteine, heat shock proteins, genistein and vitamins in ischemic stroke—pathogenic and therapeutic implicationsGoogle Scholar
  6. Biasibetti-Brendler H, Schmitz F, Pierozan P, Zanotto BS, Prezzi CA, de Andrade RB, Wannmacher CMD, Wyse ATS (2017) Hypoxanthine induces neuroenergetic impairment and cell death in striatum of young adult Wistar rats. Mol Neurobiol:1–9.  https://doi.org/10.1007/s12035-017-0634-z
  7. Boldyrev A, Bryushkova E, Mashkina A, Vladychenskaya E (2013) Why is homocysteine toxic for the nervous and immune systems? Curr Aging Sci 6(1):29–36.  https://doi.org/10.2174/18746098112059990007 PubMedCrossRefGoogle Scholar
  8. Boutin H, LeFeuvre RA, Horai R, Asano M, Iwakura Y, Rothwell NJ (2001) Role of IL-1alpha and IL-1beta in ischemic brain damage. J Neurosci 21(15):5528–5534PubMedGoogle Scholar
  9. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye binding. Anal Biochem 72(1-2):248–254.  https://doi.org/10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar
  10. Butz LW, du Vigneaud V (1932) The formation of a homologue of cysteine by the decomposition of methionine with sulphuric acid. J Biol Chem 99:135–142Google Scholar
  11. Cahill CM, Rogers JT (2008) Interleukin (IL) 1β induction of IL-6 is mediated by a novel phosphatidylinositol 3-kinase-dependent AKT/IκB kinase α pathway targeting activator protein-1. J Biol Chem 283(38):25900–25912.  https://doi.org/10.1074/jbc.M707692200 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Castro R, Rivera I, Blom HJ, Jakobs C, Tavares de Almeida I (2006) Homocysteine metabolism, hyperhomocysteinaemia and vascular disease: an overview. J Inherit Metab Dis 29(1):3–20.  https://doi.org/10.1007/s10545-006-0106-5 PubMedCrossRefGoogle Scholar
  13. Catella-Lawson F, Reilly MP, Kapoor SC, Cucchiara AJ, DeMarco S, Tournier B, Vyas SN, FitzGerald GA (2001) Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. N Engl J Med 345(25):1809–1817.  https://doi.org/10.1056/NEJMoa003199 PubMedCrossRefGoogle Scholar
  14. Chen Z, Karaplis AC, Ackerman SL, Pogribny IP, Melnyk S, Lussier-Cacan S, Chen MF, Pai A, John SW, Smith RS, Bottiglieri T, Bagley P, Selhub J, Rudnicki MA, James SJ, Rozen R (2001) Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet 10(5):433–443.  https://doi.org/10.1093/hmg/10.5.433 PubMedCrossRefGoogle Scholar
  15. Chen H, Zhang SM, Hernán MA, Schwarzschild MA, Willett WC, Colditz GA, Speizer FE, Ascherio A (2003) Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol 60(8):1059–1064.  https://doi.org/10.1001/archneur.60.8.1059 PubMedCrossRefGoogle Scholar
  16. Chen J, Zuo S, Wang J, Huang J, Zhang X, Liu Y, Zhang Y, Zhao J, Han J, Xiong L, Shi M, Liu Z (2014) Aspirin promotes oligodendrocyte precursor cell proliferation and differentiation after white matter lesion. Front Aging Neurosci 6:1–10.  https://doi.org/10.3389/fnagi.2014.00007 Google Scholar
  17. Da Cunha AA, Ferreira AGK, Da Cunha MJ, Pederzolli CD, Becker DL, Coelho JG, Dutra-Filho CS, Wyse ATS (2011) Chronic hyperhomocysteinemia induces oxidative damage in the rat lung. Mol Cell Biochem 358(1-2):153–160.  https://doi.org/10.1007/s11010-011-0930-2 PubMedCrossRefGoogle Scholar
  18. Da Cunha AA, Ferreira AGK, Loureiro SO, Da Cunha MJ, Schmitz F, Netto CA, Wyse ATS (2012) Chronic hyperhomocysteinemia increases inflammatory markers in hippocampus and serum of rats. Neurochem Res 37(8):1660–1669.  https://doi.org/10.1007/s11064-012-0769-2 PubMedCrossRefGoogle Scholar
  19. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95.  https://doi.org/10.1016/0006-2952(61)90145-9 PubMedCrossRefGoogle Scholar
  20. Faraci FM (2003) Hyperhomocysteinemia: a million ways to lose control. Arterioscler Thromb Vasc Biol 23(3):371–373.  https://doi.org/10.1161/01.ATV.0000063607.56590.7F PubMedCrossRefGoogle Scholar
  21. Faraci FM, Lentz SR (2004) Hyperhomocysteinemia, oxidative stress, and cerebral vascular dysfunction. Stroke 35(2):345–347.  https://doi.org/10.1161/01.STR.0000115161.10646.67 PubMedCrossRefGoogle Scholar
  22. Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33:829–837, 837a–837d.  https://doi.org/10.1093/eurheartj/ehr304 PubMedCrossRefGoogle Scholar
  23. Gori AM, Corsi AM, Fedi S, Gazzini A, Sofi F, Bartali B, Bandinelli S, Gensini GF, Abbate R, Ferrucci L (2005) A proinflammatory state is associated with hyperhomocysteinemia in the elderly. Am J Clin Nutr 82(2):335–341PubMedCrossRefGoogle Scholar
  24. Graham IM, O’Callaghan P (2002) Vitamins, homocysteine and cardiovascular risk. Cardiovasc Drugs Ther 16(5):383–389.  https://doi.org/10.1023/A:1022126100625 PubMedCrossRefGoogle Scholar
  25. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126(1):131–138.  https://doi.org/10.1016/0003-2697(82)90118-X PubMedCrossRefGoogle Scholar
  26. Hald A, Lotharius J (2005) Oxidative stress and inflammation in Parkinson’s disease: is there a causal link? Exp Neurol 193(2):279–290.  https://doi.org/10.1016/j.expneurol.2005.01.013 PubMedCrossRefGoogle Scholar
  27. Halliwell B (2007) Biochemistry of oxidative stress. Biochem Soc Trans 35(5):1147–1150.  https://doi.org/10.1042/BST0351147 PubMedCrossRefGoogle Scholar
  28. Hartmann A, Agurell E, Beevers C, Brendler-Schwaab S, Burlinson B, Clay P, Collins A, Smith A, Speit G, Thybaud V, Tice RR (2003) Recommendations for conducting the in vivo alkaline comet assay. Mutagenesis 18(1):45–51.  https://doi.org/10.1093/mutage/18.1.45 PubMedCrossRefGoogle Scholar
  29. Holven KB, Aukrust P, Retterstol K, Hagve TA, Mørkrid L, Ose L, Nenseter MS (2006) Increased levels of C-reactive protein and interleukin-6 in hyperhomocysteinemic subjects. Scand J Clin Lab Invest 66(1):45–54.  https://doi.org/10.1080/00335510500429821 PubMedCrossRefGoogle Scholar
  30. Hsu CS, Li Y (2002) Aspirin potently inhibits oxidative DNA strand breaks: implications for cancer chemoprevention. Biochem Biophys Res Commun 293(2):705–709.  https://doi.org/10.1016/S0006-291X(02)00271-1 PubMedCrossRefGoogle Scholar
  31. Ignarro LJ (1989) Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ Res:65Google Scholar
  32. Ignarro LJ (2000) Nitric oxide: biology and pathobiology. Academic PressGoogle Scholar
  33. Isobe C, Murata T, Sato C, Terayama Y (2005) Increase of total homocysteine concentration in cerebrospinal fluid in patients with Alzheimer’s disease and Parkinson’s disease. Life Sci 77(15):1836–1843.  https://doi.org/10.1016/j.lfs.2005.02.014 PubMedCrossRefGoogle Scholar
  34. Jimenez-Altayo F, Briones AM, Giraldo J, Planas AM, Salaices M, Vila E (2005) Increased superoxide anion production by Interleukin-1 impairs nitric oxide-mediated relaxation in resistance arteries. J Pharmacol Exp Ther 316(1):42–52.  https://doi.org/10.1124/jpet.105.088435 PubMedCrossRefGoogle Scholar
  35. Kaul S, Zadeh AA, Shah PK (2006) Homocysteine hypothesis for atherothrombotic cardiovascular disease. Not Validated J Am Coll Cardiol 48(5):914–923.  https://doi.org/10.1016/j.jacc.2006.04.086 PubMedCrossRefGoogle Scholar
  36. Keller JN, Kindy MS, Holtsberg FW, St. Clair DK, Yen H-C, Germeyer A, Steiner SM, Bruce-Keller AJ, Hutchins JB, Mattson MP (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18Google Scholar
  37. Kempuraj D, Thangavel R, Natteru PA, Selvakumar GP, Saeed D, Zahoor H, Zaheer S, Iyer SS, Zaheer A (2016) Neuroinflammation induces neurodegeneration. J Neurol Neurosurg spine 1Google Scholar
  38. Klegeris A, McGeer PL (2005) Non-steroidal anti-inflammatory drugs (NSAIDs) and other anti-inflammatory agents in the treatment of neurodegenerative disease. Curr Alzheimer Res 2(3):355–365.  https://doi.org/10.2174/1567205054367883 PubMedCrossRefGoogle Scholar
  39. Kolling J, Scherer EB, da Cunha AA, da Cunha MJ, Wyse ATS (2011) Homocysteine induces oxidative–nitrative stress in heart of rats: prevention by folic acid. Cardiovasc Toxicol 11(1):67–73.  https://doi.org/10.1007/s12012-010-9094-7 PubMedCrossRefGoogle Scholar
  40. Kruman II, Culmsee C, Chan SL, Kruman Y, Guo Z, Penix L, Mattson MP (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 20(18):6920–6926PubMedGoogle Scholar
  41. Kulkarni K, Richard BC (2003) Lifestyle, homocysteine, and the metabolic syndrome. Metab Syndr Relat Disord 1(2):141–147.  https://doi.org/10.1089/154041903322294461 PubMedCrossRefGoogle Scholar
  42. Lehotsky J, Petras M, Kovalska M, Tothova B, Drgova A, Kaplan P (2015) Mechanisms involved in the ischemic tolerance in brain: effect of the homocysteine. Cell Mol Neurobiol 35(1):7–15.  https://doi.org/10.1007/s10571-014-0112-3 PubMedCrossRefGoogle Scholar
  43. Li Y, Liu L, Kang J, Sheng JG, Barger SW, Mrak RE, Griffin WST (2000) Neuronal–glial interactions mediated by interleukin-1 enhance neuronal acetylcholinesterase activity and mRNA expression. J Neurosci 20:149–155PubMedGoogle Scholar
  44. Lindmark E, Diderholm E, Wallentin L, Siegbahn A (2001) Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy. JAMA 286(17):2107–2113.  https://doi.org/10.1001/jama.286.17.2107 PubMedCrossRefGoogle Scholar
  45. Liu C-C, Ho W-Y, Leu K-L, Tsai H-M, Yang T-H (2009) Effects of S -adenosylhomocysteine and homocysteine on DNA damage and cell cytotoxicity in murine hepatic and microglia cell lines. J Biochem Mol Toxicol 23(5):349–356.  https://doi.org/10.1002/jbt.20298 PubMedCrossRefGoogle Scholar
  46. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(3):265–275.  https://doi.org/10.1016/0304-3894(92)87011-4 PubMedGoogle Scholar
  47. MacMillan-Crow LA, Crow JP, Kerby JD, Beckman JS, Thompson JA (1996) Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc Natl Acad Sci U S A 93(21):11853–11858.  https://doi.org/10.1073/pnas.93.21.11853 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Maluf SW, Erdtmann B (2000) Follow-up study of the genetic damage in lymphocytes of pharmacists and nurses handling antineoplastic drugs evaluated by cytokinesis-block micronuclei analysis and single cell gel electrophoresis assay. Mutat Res Toxicol Environ Mutagen 471(1-2):21–27.  https://doi.org/10.1016/S1383-5718(00)00107-8 CrossRefGoogle Scholar
  49. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474.  https://doi.org/10.1111/j.1432-1033.1974.tb03714.x PubMedCrossRefGoogle Scholar
  50. Matté C, Mackedanz V, Stefanello FM, Scherer EBS, Andreazza AC, Zanotto C, Moro AM, Garcia SC, Gonçalves CA, Erdtmann B, Salvador M, Wyse ATS (2009a) Chronic hyperhomocysteinemia alters antioxidant defenses and increases DNA damage in brain and blood of rats: protective effect of folic acid. Neurochem Int 54(1):7–13.  https://doi.org/10.1016/j.neuint.2008.08.011 PubMedCrossRefGoogle Scholar
  51. Matté C, Stefanello FM, Mackedanz V, Pederzolli CD, Lamers ML, Dutra-Filho CS, Dos Santos MF, Wyse ATS (2009b) Homocysteine induces oxidative stress, inflammatory infiltration, fibrosis and reduces glycogen/glycoprotein content in liver of rats. Int J Dev Neurosci 27(4):337–344.  https://doi.org/10.1016/j.ijdevneu.2009.03.005 PubMedCrossRefGoogle Scholar
  52. McCully KS (2015) Homocysteine metabolism, atherosclerosis, and diseases of aging. In: Comprehensive physiology. John Wiley & Sons, Inc., Hoboken, pp 471–505.  https://doi.org/10.1002/cphy.c150021 CrossRefGoogle Scholar
  53. Milton NGN (2008) Homocysteine inhibits hydrogen peroxide breakdown by catalase. Open Enzym Inhib J 1(1):34–41.  https://doi.org/10.2174/1874940200801010034 CrossRefGoogle Scholar
  54. Moore AH, O’Banion M (2002) Neuroinflammation and anti-inflammatory therapy for Alzheimer’s disease. Adv Drug Deliv Rev 54(12):1627–1656.  https://doi.org/10.1016/S0169-409X(02)00162-X PubMedCrossRefGoogle Scholar
  55. Murray MT, Pizzorno JE (2013) Textbook of natural medicine. In: Textbook of natural medicineGoogle Scholar
  56. Nadin SB, Vargas-Roig LM, Ciocca DR (2001) A silver staining method for single-cell gel assay. J Histochem Cytochem 49(9):1183–1186.  https://doi.org/10.1177/002215540104900912 PubMedCrossRefGoogle Scholar
  57. Neves LB, Macedo DM, Lopes AC (2004) Homocysteine. J Bras Patol Med Lab 40(5):311–320.  https://doi.org/10.1590/S1676-24442004000500006 CrossRefGoogle Scholar
  58. Obeid R, Herrmann W (2006) Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett 580(13):2994–3005.  https://doi.org/10.1016/J.FEBSLET.2006.04.088 PubMedCrossRefGoogle Scholar
  59. Picerno I, Chirico C, Condello S, Visalli G, Ferlazzo N, Gorgone G, Caccamo D, Ientile R (2007) Homocysteine induces DNA damage and alterations in proliferative capacity of T-lymphocytes: a model for immunosenescence? Biogerontology 8(2):111–119.  https://doi.org/10.1007/s10522-006-9040-z PubMedCrossRefGoogle Scholar
  60. Poddar R, Paul S (2009) Homocysteine-NMDA receptor-mediated activation of extracellular signal-regulated kinase leads to neuronal cell death. J Neurochem 110(3):1095–1106.  https://doi.org/10.1111/j.1471-4159.2009.06207.x PubMedPubMedCentralCrossRefGoogle Scholar
  61. Rao GHR, Fareed J (2012) Aspirin prophylaxis for the prevention of thrombosis: expectations and limitations. Thrombosis 2012:104707–104709.  https://doi.org/10.1155/2012/104707 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Richman IB, Owens DK (2017) Aspirin for primary prevention. Med Clin North Am 101(4):713–724.  https://doi.org/10.1016/j.mcna.2017.03.004 PubMedCrossRefGoogle Scholar
  63. Ridker PM, Rifai N, Stampfer MJ, Hennekens CH (2000) Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101(15):1767–1772.  https://doi.org/10.1161/01.CIR.101.15.1767 PubMedCrossRefGoogle Scholar
  64. Rubio-Perez JM, Morillas-Ruiz JM (2012) A review: inflammatory process in Alzheimer’s disease, role of cytokines. ScientificWorldJournal 2012:756357–756315.  https://doi.org/10.1100/2012/756357 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Scherer EBS, da Cunha MJ, Matté C, Schmitz F, Netto CA, Wyse ATS (2010) Methylphenidate affects memory, brain-derived neurotrophic factor immunocontent and brain acetylcholinesterase activity in the rat. Neurobiol Learn Mem 94(2):247–253.  https://doi.org/10.1016/j.nlm.2010.06.002 PubMedCrossRefGoogle Scholar
  66. Scherer EBS, da Cunha AA, Kolling J, da Cunha MJ, Schmitz F, Sitta A, Lima DD, Delwing D, Vargas CR, Wyse ATS (2011) Development of an animal model for chronic mild hyperhomocysteinemia and its response to oxidative damage. Int J Dev Neurosci 29(7):693–699.  https://doi.org/10.1016/j.ijdevneu.2011.06.004 PubMedCrossRefGoogle Scholar
  67. Scherer EBS, Loureiro SO, Vuaden FC, da Cunha AA, Schmitz F, Kolling J, Savio LEB, Bogo MR, Bonan CD, Netto CA, Wyse ATS (2014) Mild hyperhomocysteinemia increases brain acetylcholinesterase and proinflammatory cytokine levels in different tissues. Mol Neurobiol 50(2):589–596.  https://doi.org/10.1007/s12035-014-8660-6 PubMedCrossRefGoogle Scholar
  68. Schliebs R, Arendt T (2006) The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J Neural Transm 113(11):1625–1644.  https://doi.org/10.1007/s00702-006-0579-2 PubMedCrossRefGoogle Scholar
  69. Schweinberger BM, Rodrigues AF, dos Santos TM, Rohden F, Barbosa S, da Luz Soster PR, Partata WA, Faccioni-Heuser MC, Wyse ATS (2017) Methionine administration in pregnant rats causes memory deficit in the offspring and alters ultrastructure in brain tissue. Neurotox Res.  https://doi.org/10.1007/s12640-017-9830-x
  70. Sharma GS, Kumar T, Dar TA, Singh LR (2015) Protein N-homocysteinylation: from cellular toxicity to neurodegeneration. Biochim Biophys Acta - Gen Subj 1850(11):2239–2245.  https://doi.org/10.1016/j.bbagen.2015.08.013 CrossRefGoogle Scholar
  71. Shi X, Ding M, Dong Z, Chen F, Ye J, Wang S, Leonard SS, Castranova V, Vallyathan V (1999) Antioxidant properties of aspirin: characterization of the ability of aspirin to inhibit silica-induced lipid peroxidation, DNA damage, NF-kappaB activation, and TNF-alpha production. Mol Cell Biochem 199(1/2):93–102.  https://doi.org/10.1023/A:1006934612368 PubMedCrossRefGoogle Scholar
  72. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191.  https://doi.org/10.1016/0014-4827(88)90265-0 PubMedCrossRefGoogle Scholar
  73. Singh RP, Sharad S, Kapur S (2004) Free radicals and oxidative stress in neurodegenerative diseases: relevance of dietary antioxidants. JIACM 5:218–25Google Scholar
  74. Škovierová H, Vidomanová E, Mahmood S, Sopková J, Drgová A, Červeňová T, Halašová E, Lehotský J (2016) The molecular and cellular effect of homocysteine metabolism imbalance on human health. Int J Mol Sci 17.  https://doi.org/10.3390/ijms17101733, 10
  75. Song Y-S, Rosenfeld ME (2004) Methionine-induced hyperhomocysteinemia promotes superoxide anion generation and NF κ B activation in peritoneal macrophages of C57BL/6 mice. J Med Food 7(2):229–234.  https://doi.org/10.1089/1096620041224021 PubMedCrossRefGoogle Scholar
  76. Streck EL, Matte C, Vieira PS, Rombaldi F, Wannmacher CMD, Wajner M, Wyse ATS (2002) Reduction of Na(+),K(+)-ATPase activity in hippocampus of rats subjected to chemically induced hyperhomocysteinemia. Neurochem Res 27(12):1593–1598.  https://doi.org/10.1023/A:1021670607647 PubMedCrossRefGoogle Scholar
  77. Tauseef M, Sharma KK, Fahim M (2007) Aspirin restores normal baroreflex function in hypercholesterolemic rats by its antioxidative action. Eur J Pharmacol 556(1-3):136–143.  https://doi.org/10.1016/j.ejphar.2006.11.029 PubMedCrossRefGoogle Scholar
  78. Tauseef M, Shahid M, Sharma KK, Fahim M (2008) Antioxidative action of aspirin on endothelial function in hypercholesterolaemic rats. Basic Clin Pharmacol Toxicol 103(4):314–321.  https://doi.org/10.1111/j.1742-7843.2008.00277.x PubMedCrossRefGoogle Scholar
  79. Teismann P, Ferger B (2001) Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson’s disease. Synapse 39(2):167–174.  https://doi.org/10.1002/1098-2396(200102)39:2<167::AID-SYN8>3.0.CO;2-U PubMedCrossRefGoogle Scholar
  80. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu J-C, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35(3):206–221.  https://doi.org/10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J PubMedCrossRefGoogle Scholar
  81. Touzani O, Boutin H, LeFeuvre R, Parker L, Miller A, Luheshi G, Rothwell N (2002) Interleukin-1 influences ischemic brain damage in the mouse independently of the interleukin-1 type I receptor. J Neurosci 22(1):38–43PubMedGoogle Scholar
  82. Tracey KJ, Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW (2000) Vagus nerve stimulation attenuates the systemic inflammatory responseto endotoxin. Nature 405(6785):458–462.  https://doi.org/10.1038/35013070 PubMedCrossRefGoogle Scholar
  83. Ueland PM, Refsum H, Stabler SP, Malinow MR, Andersson A, Allen RH (1993) Total homocysteine in plasma or serum: methods and clinical applications. Clin Chem 39:1764–1779PubMedGoogle Scholar
  84. Underwood MJ, More RS (1994) The aspirin papers. BMJ 308(6921):71–72.  https://doi.org/10.1136/bmj.308.6921.71 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Vanzin CS, Manfredini V, Marinho AE, Biancini GB, Ribas GS, Deon M, Wyse AT, Wajner M, Vargas CR (2014) Homocysteine contribution to DNA damage in cystathionine β-synthase-deficient patients. Gene 539(2):270–274.  https://doi.org/10.1016/j.gene.2014.02.015 PubMedCrossRefGoogle Scholar
  86. Wainstein MV, Mossmann M, Araujo GN, Gonçalves SC, Gravina GL, Sangalli M, Veadrigo F, Matte R, Reich R, Costa FG, Andrades M, da Silva AMV, Bertoluci MC (2017) Elevated serum interleukin-6 is predictive of coronary artery disease in intermediate risk overweight patients referred for coronary angiography. Diabetol Metab Syndr 9(1):67.  https://doi.org/10.1186/s13098-017-0266-5 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15(22):2922–2933PubMedGoogle Scholar
  88. Wang J, Tan L, Wang H-F, Tan C-C, Meng X-F, Wang C, Tang S-W, Yu J-T (2015) Anti-inflammatory drugs and risk of Alzheimer’s disease: an updated systematic review and meta-analysis. J Alzheimers Dis 44:385–396.  https://doi.org/10.3233/JAD-141506 PubMedGoogle Scholar
  89. Watanabe M, Osada J, Aratani Y, Kluckman K, Reddick R, Malinow MR, Maeda N (1995) Mice deficient in cystathionine beta-synthase: animal models for mild and severe homocyst(e)inemia. Proc Natl Acad Sci U S A 92(5):1585–1589.  https://doi.org/10.1073/pnas.92.5.1585 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Wu R, Lamontagne D, de Champlain J (2002) Antioxidative properties of acetylsalicylic acid on vascular tissues from normotensive and spontaneously hypertensive rats. Circulation 105(3):387–392.  https://doi.org/10.1161/hc0302.102609 PubMedCrossRefGoogle Scholar
  91. Wyse ATS, Zugno AI, Streck EL, Matté C, Calcagnotto T, Wannmacher CMD, Wajner M (2002) Inhibition of Na+,K+-ATPase activity in hippocampus of rats subjected to acute administration of homocysteine is prevented by vitamins E and C treatment. Neurochem Res 27:1685–1689.  https://doi.org/10.1023/A:1021647329937 PubMedCrossRefGoogle Scholar
  92. Xu Z, Tong C, Eisenach JC (1996) Acetylcholine stimulates the release of nitric oxide from rat spinal cord. Anesthesiology 85(1):107–111.  https://doi.org/10.1097/00000542-199607000-00015 PubMedCrossRefGoogle Scholar
  93. Yamakura F, Taka H, Fujimura T, Murayama K (1998) Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem 273(23):14085–14089.  https://doi.org/10.1074/jbc.273.23.14085 PubMedCrossRefGoogle Scholar
  94. Zhou J, Werstuck GH, Lhotak S, Shi YY, Tedesco V, Trigatti B, Dickhout J, Majors AK, DiBello PM, Jacobsen DW, Austin RC (2008) Hyperhomocysteinemia induced by methionine supplementation does not independently cause atherosclerosis in C57BL/6J mice. FASEB J 22(7):2569–2578.  https://doi.org/10.1096/fj.07-105353 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Daniella de S. Moreira
    • 1
    • 2
  • Paula W. Figueiró
    • 1
    • 2
  • Cassiana Siebert
    • 1
    • 2
  • Caroline A. Prezzi
    • 2
  • Francieli Rohden
    • 1
  • Fatima C. R. Guma
    • 1
    • 3
  • Vanusa Manfredini
    • 4
  • Angela T. S. Wyse
    • 1
    • 2
    • 3
  1. 1.Programa de Pós-Graduação em Ciências Biológicas: BioquímicaICBS, UFRGSPorto AlegreBrazil
  2. 2.Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de BioquímicaICBS, UFRGSPorto AlegreBrazil
  3. 3.Departamento de BioquímicaICBS, UFRGSPorto AlegreBrazil
  4. 4.Laboratório de Hematologia e Citologia ClínicaUniversidade Federal do PampaUruguaianaBrazil

Personalised recommendations