Neurotoxicity Research

, Volume 32, Issue 1, pp 134–140 | Cite as

On the Role of DT-Diaphorase Inhibition in Aminochrome-Induced Neurotoxicity In Vivo

  • Andrea Herrera-Soto
  • Gabriela Díaz-Veliz
  • Sergio Mora
  • Patricia Muñoz
  • Pablo Henny
  • Harry W. M. Steinbusch
  • Juan Segura-AguilarEmail author


Dopamine oxidation in the pathway leading to neuromelanin formation generates the ortho-quinone aminochrome, which is potentially neurotoxic but normally rapidly converted by DT-diaphorase to nontoxic leukoaminochrome. However, when administered exogenously into rat striatum, aminochrome is able to produce damage to dopaminergic neurons. Because of a recent report that substantia nigra pars compacta (SNpc) tyrosine hydroxylase (T-OH) levels were unaltered by aminochrome when there was cell shrinkage of dopaminergic neurons along with a reduction in striatal dopamine release, the following study was conducted to more accurately determine the role of DT-diaphorase in aminochrome neurotoxicity. In this study, a low dose of aminochrome (0.8 nmol) with or without the DT-diaphorase inhibitor dicoumarol (0.2 nmol) was injected into the left striatum of rats. Intrastriatal 6-hydroxydopamine (6-OHDA, 32 nmol) was used as a positive neurotoxin control in other rats. Two weeks later, there was significant loss in numbers of T-OH immunoreactive fibers in SNpc, also a loss in cell density in SNpc, and prominent apomorphine (0.5 mg/kg sc)-induced contralateral rotations in rats that had been treated with aminochrome, with aminochrome/dicoumarol, or with 6-OHDA. Findings demonstrate that neurotoxic aminochrome is able to exert neurotoxicity only when DT-diaphorase is suppressed—implying that DT-diaphorase is vital in normally suppressing toxicity of in vivo aminochrome, generated in the pathway towards neuromelanin formation.


Aminochrome DT-diaphorase Neurotoxicity Substantia nigra Dopamine Neurodegeneration Neuroprotection 



The authors are thankful to Ali Jahanshahi (Postdoctoral Fellow at Maastricht University), João Oliveira (PhD student at Maastricht University) and Denise Hermes, and Hellen Steinbusch for all the technical support and guidance.

This work was supported by FONDECYT no. 1100165 (JSA), University of Chile ENL014/14 (JSA).


  1. Aguirre P, Urrutia P, Tapia V, Villa M, Paris I, Segura-Aguilar J, Núñez MT (2012) The dopamine metabolite aminochrome inhibits mitochondrial complex I and modifies the expression of iron transporters DMT1 and FPN1. Biometals 25:795–803CrossRefPubMedGoogle Scholar
  2. Arriagada C, Paris I, Sanchez de las Matas MJ, Martinez-Alvarado P, Cardenas S, Castañeda P, Graumann R, Perez-Pastene C, Olea-Azar C, Couve E, Herrero MT, Caviedes P, Segura-Aguilar J (2004) On the neurotoxicity mechanism of leukoaminochrome o-semiquinone radical derived from dopamine oxidation: mitochondria damage, necrosis, and hydroxyl radical formation. Neurobiol Dis 16:468–477CrossRefPubMedGoogle Scholar
  3. Athauda D, Foltynie T (2015) The ongoing pursuit of neuroprotective therapies in Parkinson disease. Nat Rev Neurol 11:25–40CrossRefPubMedGoogle Scholar
  4. Faunes M, Fernandez S, Gutierrez-Ibanez C, Iwaniuk AN, Wylie DR, Mpodozis J, Karten HJ, Marin G (2013) Laminar segregation of GABAergic neurons in the avian nucleus isthmi pars magnocellularis: a retrograde tracer and comparative study. J Comp Neurol 521:1727–1742CrossRefPubMedGoogle Scholar
  5. Faunes M, Oñate-Ponce A, Fernández-Collemann S, Henny P (2015) Excitatory and inhibitory innervation of the mouse orofacial motor nuclei: a stereological study. J Comp Neuro l524:738–758Google Scholar
  6. Fuentes P, Paris I, Nassif M, Caviedes P, Segura-Aguilar J (2007) Inhibition of VMAT-2 and DT-diaphorase induce cell death in a substantia nigra-derived cell line—an experimental cell model for dopamine toxicity studies. Chem Res Toxicol 20:776–783CrossRefPubMedGoogle Scholar
  7. Gutiérrez-Ibánez C, Iwaniuk AN, Lisney TJ, Faunes M, Marin GJ, Wylie DR (2012) Functional implications of species differences in the size and morphology of the isthmo optic nucleus (ION) in birds. PLoS One 7:e37816CrossRefPubMedPubMedCentralGoogle Scholar
  8. Henny P, Brown MT, Northrop A, Faunes M, Ungless MA, Magill PJ, Bolam JP (2012) Structural correlates of heterogeneous in vivo activity of midbrain dopaminergic neurons. Nat Neurosci 15:613–619CrossRefPubMedPubMedCentralGoogle Scholar
  9. Herrera A, Muñoz P, Paris I, Díaz-Veliz G, Mora S, Inzunza J, Hultenby K, Cardenas C, Jaña F, Raisman-Vozari R, Gysling K, Abarca J, Steinbusch HW, Segura-Aguilar J (2016) Aminochrome induces dopaminergic neuronal dysfunction: a new animal model for Parkinson's disease. Cell Mol Life Sci 73:3583–3597CrossRefPubMedGoogle Scholar
  10. Herrera A, Muñoz P, Steinbusch HW, Segura-Aguilar J. (2017) Are Dopamine Oxidation Metabolites Involved in the Loss of Dopaminergic Neurons in the Nigrostriatal System in Parkinson's Disease? ACS Chem Neurosci. 2017 Mar 3. doi: 10.1021/acschemneuro.7b00034
  11. Huenchuguala S, Muñoz P, Zavala P, Villa M, Cuevas C, Ahumada U, Graumann R, Nore BF, Couve E, Mannervik B, Paris I, Segura-Aguilar J (2014) Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction. Autophagy 10:618–630CrossRefPubMedPubMedCentralGoogle Scholar
  12. Huenchuguala S, Muñoz P, Graumann R, Paris I, Segura-Aguilar J (2016) DT-diaphorase protects astrocytes from aminochrome-induced toxicity. Neurotoxicology 55:10–12CrossRefPubMedGoogle Scholar
  13. Lindholm D, Mäkelä J, Di Liberto V, Mudò G, Belluardo N, Eriksson O, Saarma M (2015) Current disease modifying approaches to treat Parkinson's disease. Cell Mol Life Sci 73:1365–1379CrossRefPubMedGoogle Scholar
  14. Lozano J, Muñoz P, Nore BF, Ledoux S, Segura-Aguilar J (2010) Stable expression of short interfering RNA for DT-diaphorase induces neurotoxicity. Chem Res Toxicol 23:1492–1496CrossRefPubMedGoogle Scholar
  15. Muñoz P, Segura-Aguilar J (2016) Commentary: a humanized clinically calibrated quantitative systems pharmacology model for hypokinetic motor symptoms in Parkinson's disease. Front Pharmacol 27:179Google Scholar
  16. Muñoz P, Segura-Aguilar J. (2017) Why we cannot translate successful results to new therapies in Parkinson’s disease. Clin Pharmacol Transl Med. 1Google Scholar
  17. Muñoz P, Huenchuguala S, Paris I, Segura-Aguilar J (2012a) Dopamine oxidation and autophagy. Parkinsons Dis 920953Google Scholar
  18. Muñoz P, Paris I, Sanders LH, Greenamyre JT, Segura-Aguilar J (2012b) Overexpression of VMAT-2 and DT-diaphorase protects substantia nigra-derived cells against aminochrome neurotoxicity. Biochim Biophys Acta 1822:1125–1136CrossRefPubMedGoogle Scholar
  19. Muñoz P, Cardenas S, Huenchuguala S, Briceño A, Couve E, Paris I, Segura-Aguilar J (2015) DT-diaphorase prevents aminochrome-induced alpha-synuclein oligomer formation and neurotoxicity. Toxicol Sci 145:37–47CrossRefPubMedPubMedCentralGoogle Scholar
  20. Muñoz P, Paris I, Segura-Aguilar J (2016) Commentary: evaluation of models of Parkinson's disease. Front Neurosci 19:10–161Google Scholar
  21. Olanow W, Bartus RT, Volpicelli-Daley LA, Kordower JH (2015) Trophic factors for Parkinson's disease: to live or let die. Mov Disord 30:1715–1724CrossRefPubMedGoogle Scholar
  22. Paris I, Perez-Pastene C, Cardenas S, Iturriaga-Vasquez P, Muñoz P, Couve E, Caviedes P, Segura-Aguilar J (2010) Aminochrome induces disruption of actin, alpha-, and beta-tubulin cytoskeleton networks in substantia-nigra-derived cell line. Neurotox Res 18:82–92CrossRefPubMedGoogle Scholar
  23. Paris I, Muñoz P, Huenchuguala S, Couve E, Sanders LH, Greenamyre JT, Caviedes P, Segura-Aguilar J (2011) Autophagy protects against aminochrome-induced cell death in substantia nigra-derived cell line. Toxicol Sci 121:376–388CrossRefPubMedPubMedCentralGoogle Scholar
  24. Park A, Stacy M (2015) Modifying drugs in Parkinson's disease. Drugs 75:2065–2071CrossRefPubMedGoogle Scholar
  25. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, San Diego, CAGoogle Scholar
  26. Segura-Aguilar J (2016d) New preclinical model are required to discover neuroprotective compound in Parkinson's disease. Pharmacol Res pii S1043-6618(16):31198–31197Google Scholar
  27. Segura-Aguilar J, Kostrzewa RM (2015) Neurotoxin mechanisms and processes relevant to Parkinson's disease: an update. Neurotox Res 27:328–354CrossRefPubMedGoogle Scholar
  28. Segura-Aguilar J, Metodiewa D, Welch CJ. (1998) Metabolic activation of dopamine o-quinones to osemiquinones by NADPH cytochrome P450 reductase may play an important role in oxidative stress and apoptotic effects. Biochim Biophys Acta. 1381:1-6Google Scholar
  29. Segura-Aguilar J, Lind C (1989) On the mechanism of the Mn3(+)-induced neurotoxicity of dopamine: prevention of quinone-derived oxygen toxicity by DT-diaphorase and superoxide dismutase. Chem Biol Interact 72:309–324CrossRefPubMedGoogle Scholar
  30. Segura-Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L, Zucca FA (2014) Protective and toxic roles of dopamine in Parkinson's disease. J Neurochem 129:898–915CrossRefPubMedGoogle Scholar
  31. Segura-Aguilar J, Muñoz P, Paris I (2016a) Aminochrome as new preclinical model to find new pharmacological treatment that stop the development of Parkinson's disease. Curr Med Chem 23:346–359CrossRefPubMedGoogle Scholar
  32. Segura-Aguilar J, Paris I, Muñoz P (2016b) The need of a new and more physiological preclinical model for Parkinson's disease. Cell Mol Life Sci 73:1381–1382CrossRefPubMedGoogle Scholar
  33. Segura-Aguilar J (2016c) New preclinical model are required to discover neuroprotective compound in Parkinson's disease. Pharmacol Res pii S1043-6618(16):31198–31197Google Scholar
  34. West MJ, Slomianka L, Gundersen HJG (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497CrossRefPubMedGoogle Scholar
  35. Williams A (1986) MPTP toxicity: clinical features. J Neural Transm Suppl 20:5–9PubMedGoogle Scholar
  36. Xiong R, Siegel D, Ross D (2014) Quinone-induced protein handling changes: implications for major protein handling systems in quinone-mediated toxicity. Toxicol Appl Pharmacol 280:285–295CrossRefPubMedPubMedCentralGoogle Scholar
  37. Zafar KS, Siegel D, Ross D (2006) A potential role for cyclized quinones derived from dopamine, DOPA, and 3,4-dihydroxyphenylacetic acid in proteasomal inhibition. MolPharmacol 70:1079–1086Google Scholar
  38. Zecca L, Fariello R, Riederer P, Sulzer D, Gatti A, Tampellini D (2002) The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson’s disease. FEBS Lett 510:216–220CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Andrea Herrera-Soto
    • 1
    • 2
  • Gabriela Díaz-Veliz
    • 1
  • Sergio Mora
    • 1
  • Patricia Muñoz
    • 1
  • Pablo Henny
    • 3
  • Harry W. M. Steinbusch
    • 2
  • Juan Segura-Aguilar
    • 1
    Email author
  1. 1.Molecular & Clinical Pharmacology, Faculty of MedicineUniversity of ChileSantiago 7Chile
  2. 2.Department of Neuroscience, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
  3. 3.Laboratorio de Neuroanatomía, Departamento de Anatomía Normal, Escuela de MedicinaPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations