Advertisement

Neurotoxicity Research

, Volume 31, Issue 4, pp 545–559 | Cite as

RA Differentiation Enhances Dopaminergic Features, Changes Redox Parameters, and Increases Dopamine Transporter Dependency in 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells

  • Fernanda M. LopesEmail author
  • Leonardo Lisbôa da Motta
  • Marco A. De Bastiani
  • Bianca Pfaffenseller
  • Bianca W. Aguiar
  • Luiz F. de Souza
  • Geancarlo Zanatta
  • Daiani M. Vargas
  • Patrícia Schönhofen
  • Giovana F. Londero
  • Liana M. de Medeiros
  • Valder N. Freire
  • Alcir L. Dafre
  • Mauro A. A. Castro
  • Richard B. Parsons
  • Fabio KlamtEmail author
ORIGINAL ARTICLE

Abstract

Research on Parkinson’s disease (PD) and drug development is hampered by the lack of suitable human in vitro models that simply and accurately recreate the disease conditions. To counteract this, many attempts to differentiate cell lines, such as the human SH-SY5Y neuroblastoma, into dopaminergic neurons have been undertaken since they are easier to cultivate when compared with other cellular models. Here, we characterized neuronal features discriminating undifferentiated and retinoic acid (RA)-differentiated SH-SYSY cells and described significant differences between these cell models in 6-hydroxydopamine (6-OHDA) cytotoxicity. In contrast to undifferentiated cells, RA-differentiated SH-SY5Y cells demonstrated low proliferative rate and a pronounced neuronal morphology with high expression of genes related to synapse vesicle cycle, dopamine synthesis/degradation, and of dopamine transporter (DAT). Significant differences between undifferentiated and RA-differentiated SH-SY5Y cells in the overall capacity of antioxidant defenses were found; although RA-differentiated SH-SY5Y cells presented a higher basal antioxidant capacity with high resistance against H2O2 insult, they were twofold more sensitive to 6-OHDA. DAT inhibition by 3α-bis-4-fluorophenyl-methoxytropane and dithiothreitol (a cell-permeable thiol-reducing agent) protected RA-differentiated, but not undifferentiated, SH-SY5Y cells from oxidative damage and cell death caused by 6-OHDA. Here, we demonstrate that undifferentiated and RA-differentiated SH-SY5Y cells are two unique phenotypes and also have dissimilar mechanisms in 6-OHDA cytotoxicity. Hence, our data support the use of RA-differentiated SH-SY5Y cells as an in vitro model of PD. This study may impact our understanding of the pathological mechanisms of PD and the development of new therapies and drugs for the management of the disease.

Keywords

SH-SY5Y cells Retinoic acid Parkinson’s disease Experimental model 6-hydroxydopamine Dopamine transporter 

Notes

Acknowledgements

Brazilian funds CNPq/MS/SCTIE/DECIT-Pesquisas Sobre Doenças Neurodegenerativas (no. 466989/2014-8), MCT/CNPq INCT-TM (no. 573671/2008-7), and Rapid Response Innovation Award/MJFF (no. 1326-2014) provided the financial support without interference in the ongoing work. FK received a fellowship from MCT/CNPq (no. 306439/2014-0). FML received a fellowship from Programa de Doutorado Sanduíche no Exterior (PDSE)/CAPES (no. 14581/2013-2). We thank Dr. Florencia M. Barbé-Tuana for technical assistance with flow cytometry and Dr. Tadeu Mello e Souza for kindly providing DATi.

Author Contributions

F.M.L., L.L.M., L.F.S., D.M.V., P.S., G.F.L., and L.M. performed experiments. B.P. and B.W.A. performed the RNA extraction for the microarray analysis. G.Z. and V.N.F. performed the molecular docking. F.M.L., L.L.M., M.A.D.B., M.A.A.C., R.B.P., A.L.D., and F.K. analyzed and interpreted the data. F.M.L. and F.K. conceived and designed the experiments. F.M.L. and F.K. wrote the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

12640_2016_9699_MOESM1_ESM.pdf (504 kb)
ESM 1 (PDF 503 kb)

References

  1. Abad F, Maroto R, López MG et al (1995) Pharmacological protection against the cytotoxicity induced by 6-hydroxydopamine and H2O2 in chromaffin cells. Eur J Pharmacol 293:55–64CrossRefPubMedGoogle Scholar
  2. Agholme L, Lindström T, Kågedal K et al (2010) An in vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons. J Alzheimers Dis 20:1069–1082. doi: 10.3233/JAD-2010-091363 CrossRefPubMedGoogle Scholar
  3. Bal-Price AK, Hogberg HT, Buzanska L, Coecke S (2010) Relevance of in vitro neurotoxicity testing for regulatory requirements: challenges to be considered. Neurotoxicol Teratol 32:36–41. doi: 10.1016/j.ntt.2008.12.003 CrossRefPubMedGoogle Scholar
  4. Beyenbach KW, Wieczorek H (2006) The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol 209:577–589. doi: 10.1242/jeb.02014 CrossRefPubMedGoogle Scholar
  5. Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res 38:3751–3757PubMedGoogle Scholar
  6. Cerruti C, Walther DM, Kuhar MJ, Uhl GR (1993) Dopamine transporter mRNA expression is intense in rat midbrain neurons and modest outside midbrain. Brain Res Mol Brain Res 18:181–186CrossRefPubMedGoogle Scholar
  7. Cheung Y-T, Lau WK-W, Yu M-S et al (2009) Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology 30:127–135. doi: 10.1016/j.neuro.2008.11.001 CrossRefPubMedGoogle Scholar
  8. Daubner SC, Le T, Wang S (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 508:1–12. doi: 10.1016/j.abb.2010.12.017 CrossRefPubMedGoogle Scholar
  9. Dexter DT, Jenner P (2013) Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med 62:132–144. doi: 10.1016/j.freeradbiomed.2013.01.018 CrossRefPubMedGoogle Scholar
  10. Dunkley PR, Bobrovskaya L, Graham ME et al (2004) Tyrosine hydroxylase phosphorylation: regulation and consequences. J Neurochem 91:1025–1043. doi: 10.1111/j.1471-4159.2004.02797.x CrossRefPubMedGoogle Scholar
  11. Fariello RG (1988) Experimental support for the implication of oxidative stress in the genesis of parkinsonian syndromes. Funct Neurol 3:407–412PubMedGoogle Scholar
  12. Filograna R, Civiero L, Ferrari V et al (2015) Analysis of the catecholaminergic phenotype in human SH-SY5Y and BE(2)-M17 neuroblastoma cell lines upon differentiation. PLoS One 10:e0136769. doi: 10.1371/journal.pone.0136769 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Forster JI, Köglsberger S, Trefois C et al (2016) Characterization of differentiated SH-SY5Y as neuronal screening model reveals increased oxidative vulnerability. J Biomol Screen. doi: 10.1177/1087057115625190 PubMedCentralGoogle Scholar
  14. Frade JM, Ovejero-Benito MC (2015) Neuronal cell cycle: the neuron itself and its circumstances. Cell Cycle 14:712–720. doi: 10.1080/15384101.2015.1004937 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Garcia-Garcia A, Zavala-Flores L, Rodriguez-Rocha H, Franco R (2012) Thiol-redox signaling, dopaminergic cell death, and Parkinson’s disease. Antioxid Redox Signal 17:1764–1784. doi: 10.1089/ars.2011.4501 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gibb WR (1991) Neuropathology of the substantia nigra. Eur Neurol 31(Suppl 1):48–59PubMedGoogle Scholar
  17. Glinka Y, Gassen M, Youdim MB (1997) Mechanism of 6-hydroxydopamine neurotoxicity. J Neural Transm Suppl 50:55–66CrossRefPubMedGoogle Scholar
  18. González-Hernández T, Barroso-Chinea P, De La Cruz MI et al (2004) Expression of dopamine and vesicular monoamine transporters and differential vulnerability of mesostriatal dopaminergic neurons. J Comp Neurol 479:198–215. doi: 10.1002/cne.20323 CrossRefPubMedGoogle Scholar
  19. Haggarty SJ, Perlis RH (2014) Translation: screening for novel therapeutics with disease-relevant cell types derived from human stem cell models. Biol Psychiatry 75:952–960. doi: 10.1016/j.biopsych.2013.05.028 CrossRefPubMedGoogle Scholar
  20. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658. doi: 10.1111/j.1471-4159.2006.03907.x CrossRefPubMedGoogle Scholar
  21. Halperin I, Ma B, Wolfson H, Nussinov R (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 47:409–443. doi: 10.1002/prot.10115 CrossRefPubMedGoogle Scholar
  22. Hämmerle B, Yañez Y, Palanca S et al (2013) Targeting neuroblastoma stem cells with retinoic acid and proteasome inhibitor. PLoS One 8:e76761. doi: 10.1371/journal.pone.0076761 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hanrott K, Gudmunsen L, O’Neill MJ, Wonnacott S (2006) 6-hydroxydopamine-induced apoptosis is mediated via extracellular auto-oxidation and caspase 3-dependent activation of protein kinase Cdelta. J Biol Chem 281:5373–5382. doi: 10.1074/jbc.M511560200 CrossRefPubMedGoogle Scholar
  24. Hartfield EM, Yamasaki-Mann M, Ribeiro Fernandes HJ et al (2014) Physiological characterisation of human iPS-derived dopaminergic neurons. PLoS One 9:e87388. doi: 10.1371/journal.pone.0087388 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Herrup K, Yang Y (2007) Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat Rev Neurosci 8:368–378. doi: 10.1038/nrn2124 CrossRefPubMedGoogle Scholar
  26. Howman-Giles R, Shaw PJ, Uren RF, Chung DKV (2007) Neuroblastoma and other neuroendocrine tumors. Semin Nucl Med 37:286–302. doi: 10.1053/j.semnuclmed.2007.02.009 CrossRefPubMedGoogle Scholar
  27. Hsu M-F, Sun S-P, Chen Y-S et al (2005) Distinct effects of N-ethylmaleimide on formyl peptide- and cyclopiazonic acid-induced Ca2+ signals through thiol modification in neutrophils. Biochem Pharmacol 70:1320–1329. doi: 10.1016/j.bcp.2005.07.029 CrossRefPubMedGoogle Scholar
  28. Hu K, Carroll J, Rickman C, Davletov B (2002) Action of complexin on SNARE complex. J Biol Chem 277:41652–41656. doi: 10.1074/jbc.M205044200 CrossRefPubMedGoogle Scholar
  29. Iglesias-González J, Sánchez-Iglesias S, Méndez-Álvarez E et al (2012) Differential toxicity of 6-hydroxydopamine in SH-SY5Y human neuroblastoma cells and rat brain mitochondria: protective role of catalase and superoxide dismutase. Neurochem Res 37:2150–2160. doi: 10.1007/s11064-012-0838-6 CrossRefPubMedGoogle Scholar
  30. Izumi Y, Sawada H, Sakka N et al (2005) p-Quinone mediates 6-hydroxydopamine-induced dopaminergic neuronal death and ferrous iron accelerates the conversion of p-quinone into melanin extracellularly. J Neurosci Res 79:849–860. doi: 10.1002/jnr.20382 CrossRefPubMedGoogle Scholar
  31. Kandel E (2013) Principles of neural science, fifth editionGoogle Scholar
  32. KEGG Pathway Database (2016) http://www.genome.jp/kegg/pathway.html.
  33. Korecka JA, van Kesteren RE, Blaas E et al (2013) Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One 8:e63862. doi: 10.1371/journal.pone.0063862 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kovalevich J, Langford D (2013) Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol 1078:9–21. doi: 10.1007/978-1-62703-640-5_2 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kunzler A, Zeidan-Chulia F, Gasparotto J et al (2016) Changes in cell cycle and up-regulation of neuronal markers during SH-SY5Y Neurodifferentiation by retinoic acid are mediated by reactive species production and oxidative stress. Mol Neurobiol. doi: 10.1007/s12035-016-0189-4 Google Scholar
  36. Lin C-Y, Tsai C-W (2016) Carnosic acid attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells by inducing autophagy through an enhanced interaction of Parkin and Beclin1. Mol Neurobiol. doi: 10.1007/s12035-016-9873-7 Google Scholar
  37. Ljungdahl A, Hökfelt T, Jonsson G, Sachs C (1971) Autoradiographic demonstration of uptake and accumulation of 3H-6-hydroxydopamine in adrenergic nerves. Experientia 27:297–299CrossRefPubMedGoogle Scholar
  38. Lopert P, Day BJ, Patel M (2012) Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells. PLoS One 7:e50683. doi: 10.1371/journal.pone.0050683 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lopes FM, Londero GF, de Medeiros LM et al (2012) Evaluation of the neurotoxic/neuroprotective role of organoselenides using differentiated human neuroblastoma SH-SY5Y cell line challenged with 6-hydroxydopamine. Neurotox Res 22:138–149. doi: 10.1007/s12640-012-9311-1 CrossRefPubMedGoogle Scholar
  40. Lopes FM, Schröder R, da Frota MLC et al (2010) Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies. Brain Res 1337:85–94. doi: 10.1016/j.brainres.2010.03.102 CrossRefPubMedGoogle Scholar
  41. Luchtman DW, Song C (2010) Why SH-SY5Y cells should be differentiated. Neurotoxicology 31:164–165 . doi: 10.1016/j.neuro.2009.10.015author reply 165–6CrossRefPubMedGoogle Scholar
  42. Madison JM, Nurrish S, Kaplan JM (2005) UNC-13 interaction with syntaxin is required for synaptic transmission. Curr Biol 15:2236–2242. doi: 10.1016/j.cub.2005.10.049 CrossRefPubMedGoogle Scholar
  43. Mohammad MK, Al-Masri IM, Taha MO et al (2008) Olanzapine inhibits glycogen synthase kinase-3beta: an investigation by docking simulation and experimental validation. Eur J Pharmacol 584:185–191. doi: 10.1016/j.ejphar.2008.01.019 CrossRefPubMedGoogle Scholar
  44. Mullin S, Schapira AHV (2015) Pathogenic mechanisms of neurogeneration in Parkinson Disease. Neurol Clin 33:1–17. doi: 10.1016/j.ncl.2014.09.010
  45. Obeso JA, Rodriguez-Oroz MC, Goetz CG et al (2010) Missing pieces in the Parkinson's disease puzzle. Nat Med 16:653–661. doi: 10.1038/nm.2165
  46. Olanow CW (2009) Can we achieve neuroprotection with currently available anti-parkinsonian interventions? Neurology 72:S59–S64. doi: 10.1212/WNL.0b013e318199068b CrossRefPubMedGoogle Scholar
  47. Olanow CW, Kieburtz K, Schapira AHV (2008) Why have we failed to achieve neuroprotection in Parkinson’s disease? Ann Neurol 64(Suppl 2):S101–S110. doi: 10.1002/ana.21461 PubMedGoogle Scholar
  48. Påhlman S, Ruusala AI, Abrahamsson L et al (1984) Retinoic acid-induced differentiation of cultured human neuroblastoma cells: a comparison with phorbolester-induced differentiation. Cell Differ 14:135–144CrossRefPubMedGoogle Scholar
  49. Penmatsa A, Wang KH, Gouaux E (2013) X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503:85–90. doi: 10.1038/nature12533 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Pezzini F, Bettinetti L, Di Leva F et al (2016) Transcriptomic profiling discloses molecular and cellular events related to neuronal differentiation in SH-SY5Y neuroblastoma cells. Cell Mol Neurobiol:1–18. doi: 10.1007/s10571-016-0403-y
  51. Policastro L, Molinari B, Larcher F et al (2004) Imbalance of antioxidant enzymes in tumor cells and inhibition of proliferation and malignant features by scavenging hydrogen peroxide. Mol Carcinog 39:103–113. doi: 10.1002/mc.20001 CrossRefPubMedGoogle Scholar
  52. Presgraves SP, Ahmed T, Borwege S, Joyce JN (2004) Terminally differentiated SH-SY5Y cells provide a model system for studying neuroprotective effects of dopamine agonists. Neurotox Res 5:579–598CrossRefPubMedGoogle Scholar
  53. Qiao J, Paul P, Lee S et al (2012) PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation. Biochem Biophys Res Commun 424:421–426. doi: 10.1016/j.bbrc.2012.06.125 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Radio NM, Mundy WR (2008) Developmental neurotoxicity testing in vitro: models for assessing chemical effects on neurite outgrowth. Neurotoxicology 29:361–376. doi: 10.1016/j.neuro.2008.02.011 CrossRefPubMedGoogle Scholar
  55. Rizo J, Xu J (2015) The synaptic vesicle release machinery. Annu Rev Biophys 44:339–367. doi: 10.1146/annurev-biophys-060414-034057 CrossRefPubMedGoogle Scholar
  56. Ross HJ (1996) The antiproliferative effect of trans-retinoic acid is associated with selective induction of interleukin-1 beta, a cytokine that directly inhibits growth of lung cancer cells. Oncol Res 8:171–178PubMedGoogle Scholar
  57. Schapira AH, Mann VM, Cooper JM et al (1990) Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55:2142–2145CrossRefPubMedGoogle Scholar
  58. Schönhofen P, de Medeiros LM, Bristot IJ et al (2015) Cannabidiol exposure during neuronal differentiation sensitizes cells against redox-active neurotoxins. Mol Neurobiol 52:26–37. doi: 10.1007/s12035-014-8843-1 CrossRefPubMedGoogle Scholar
  59. Schüle B, Pera RAR, Langston JW (2009) Can cellular models revolutionize drug discovery in Parkinson’s disease? Biochim Biophys Acta 1792:1043–1051. doi: 10.1016/j.bbadis.2009.08.014 CrossRefPubMedGoogle Scholar
  60. Sharow KA, Temkin B, Asson-Batres MA (2012) Retinoic acid stability in stem cell cultures. Int J Dev Biol 56:273–278. doi: 10.1387/ijdb.113378ks CrossRefPubMedGoogle Scholar
  61. Sies H (2014) Role of metabolic H2O2 generation: redox signaling and oxidative stress. J Biol Chem 289:8735–8741. doi: 10.1074/jbc.R113.544635 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Soto-Otero R, Méndez-Alvarez E, Hermida-Ameijeiras A et al (2000) Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson’s disease. J Neurochem 74:1605–1612CrossRefPubMedGoogle Scholar
  63. Storch A, Kaftan A, Burkhardt K, Schwarz J (2000) 6-hydroxydopamine toxicity towards human SH-SY5Y dopaminergic neuroblastoma cells: independent of mitochondrial energy metabolism. J Neural Transm 107:281–293CrossRefPubMedGoogle Scholar
  64. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550. doi: 10.1073/pnas.0506580102 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Takei K, Mundigl O, Daniell L, De Camilli P (1996) The synaptic vesicle cycle: a single vesicle budding step involving clathrin and dynamin. J Cell Biol 133:1237–1250CrossRefPubMedGoogle Scholar
  66. Tranzer JP, Thoenen H (1973) Selective destruction of adrenergic nerve terminals by chemical analogues of 6-hydroxydopamine. Experientia 29:314–315CrossRefPubMedGoogle Scholar
  67. Xie H, Hu L, Li G (2010) SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease. Chin Med J 123:1086–1092PubMedGoogle Scholar
  68. Zhou ZD, Lan YH, Tan EK, Lim TM (2010) Iron species-mediated dopamine oxidation, proteasome inhibition, and dopaminergic cell demise: implications for iron-related dopaminergic neuron degeneration. Free Radic Biol Med 49:1856–1871. doi: 10.1016/j.freeradbiomed.2010.09.010 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Fernanda M. Lopes
    • 1
    • 2
    Email author
  • Leonardo Lisbôa da Motta
    • 1
  • Marco A. De Bastiani
    • 1
  • Bianca Pfaffenseller
    • 1
  • Bianca W. Aguiar
    • 1
  • Luiz F. de Souza
    • 3
  • Geancarlo Zanatta
    • 1
    • 4
  • Daiani M. Vargas
    • 1
  • Patrícia Schönhofen
    • 1
  • Giovana F. Londero
    • 1
  • Liana M. de Medeiros
    • 1
  • Valder N. Freire
    • 4
  • Alcir L. Dafre
    • 3
  • Mauro A. A. Castro
    • 5
  • Richard B. Parsons
    • 2
  • Fabio Klamt
    • 1
    Email author
  1. 1.Laboratory of Cellular Biochemistry, Department of BiochemistryICBS/UFRGSPorto AlegreBrazil
  2. 2.Institute of Pharmaceutical ScienceKing’s College LondonLondonUK
  3. 3.Cellular Defenses Laboratory, Department of Biochemistry, Biological Sciences CentreFederal University of Santa Catarina (UFSC)FlorianopolisBrazil
  4. 4.Department of PhysicsFederal University of Ceará (UFC)FortalezaBrazil
  5. 5.Bioinformatics and Systems Biology Laboratory, Polytechnic CenterFederal University of Paraná (UFPR)CuritibaBrazil

Personalised recommendations