Neurotoxicity Research

, Volume 31, Issue 2, pp 245–258 | Cite as

Cytotoxic Effects of Environmental Toxins on Human Glial Cells

  • Fiona D‘Mello
  • Nady Braidy
  • Helder Marçal
  • Gilles Guillemin
  • Fanny Rossi
  • Mirielle Chinian
  • Dominique Laurent
  • Charles Teo
  • Brett A. Neilan


Toxins produced by cyanobacteria and dinoflagellates have increasingly become a public health concern due to their degenerative effects on mammalian tissue and cells. In particular, emerging evidence has called attention to the neurodegenerative effects of the cyanobacterial toxin β-N-methylamino-L-alanine (BMAA). Other toxins such as the neurotoxins saxitoxin and ciguatoxin, as well as the hepatotoxic microcystin, have been previously shown to have a range of effects upon the nervous system. However, the capacity of these toxins to cause neurodegeneration in human cells has not, to our knowledge, been previously investigated. This study aimed to examine the cytotoxic effects of BMAA, microcystin-LR (MC-LR), saxitoxin (STX) and ciguatoxin (CTX-1B) on primary adult human astrocytes. We also demonstrated that α-lipoate attenuated MC-LR toxicity in primary astrocytes and characterised changes in gene expression which could potentially be caused by these toxins in primary astrocytes. Herein, we are the first to show that all of these toxins are capable of causing physiological changes consistent with neurodegeneration in glial cells, via oxidative stress and excitotoxicity, leading to a reduction in cell proliferation culminating in cell death. In addition, MC-LR toxicity was reduced significantly in astrocytes-treated α-lipoic acid. While there were no significant changes in gene expression, many of the probes that were altered were associated with neurodegenerative disease pathogenesis. Overall, this is important in advancing our current understanding of the mechanism of toxicity of MC-LR on human brain function in vitro, particularly in the context of neurodegeneration.


Cyanobacteria Neurodegeneration Microcystin Glial cells Neuroinflammation Oxidative stress 


  1. Amado LL, Garcia ML, Pereira TC, Yunes JS, Bogo MR, Monserrat JM (2011) Chemoprotection of lipoic acid against microcystin-induced toxicosis in common carp (Cyprinus carpio, Cyprinidae). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 154(3):146–153Google Scholar
  2. Astiz M, de Alaniz MJT, Marra CA (2012) The oxidative damage and inflammation caused by pesticides are reverted by lipoic acid in rat brain. Neurochem Int 61(7):1231–1241CrossRefPubMedGoogle Scholar
  3. Banack SA, Murch SJ (2009) Multiple neurotoxic items in the Chamorro diet link BMAA with ALS/PDC. Amyotroph Lateral Scler 10(Suppl 2):34–40CrossRefPubMedGoogle Scholar
  4. Birungi G, Li SFY (2011) Investigation of the effect of exposure to non cytotoxic amounts of microcystins. Metabolomics 7(4):485–499CrossRefGoogle Scholar
  5. Blard O, Feuillette S, Bou J, Chaumette B, Frébourg T, Campion D, Lecourtois M (2007) Cytoskeleton proteins are modulators of mutant tau-induced neurodegeneration in Drosophila. Hum Mol Genet 16(5):555–566CrossRefPubMedGoogle Scholar
  6. Bouaicha N, Maatouk I (2004) Microcystin-LR and nodularin induce intracellular glutathione alteration, reactive oxygen species production and lipid peroxidation in primary cultured rat hepatocytes. Toxicol Lett 148(1–2):53–63CrossRefPubMedGoogle Scholar
  7. Bouchard C, Thieke K, Maier A, Saffrich R, Hanley-Hyde J, Ansorge W, Reed S, Sicinski P, Bartek J, Eilers M (1999) Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27. EMBO J 18(19):5321–5333CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bradley WG (2009) Possible therapy for ALS based on the cyanobacteria/BMAA hypothesis. Amyotroph Lateral Scler 10(Suppl 2):118–123CrossRefPubMedGoogle Scholar
  9. Bradley WG, Mash DC (2009) Beyond Guam: the cyanobacteria/BMAA hypothesis of the cause of ALS and other neurodegenerative diseases. Amyotroph Lateral Scler 10(Suppl 2):7–20CrossRefPubMedGoogle Scholar
  10. Braidy N, Grant R, Adams S, Guillemin GJ (2010) Neuroprotective effects of naturally occurring polyphenols on quinolinic acid-induced excitotoxicity in human neurons. FEBS J 277(2):368–382CrossRefPubMedGoogle Scholar
  11. Braidy, N., A. Matin, F. Rossi, M. Chinain, D. Laurent and G. J. Guillemin (2013). Neuroprotective effects of rosmarinic acid on ciguatoxin in primary human neurons. Neurotox Res 1–9Google Scholar
  12. Brambilla L, Martorana F, Rossi D (2013) Astrocyte signaling and neurodegeneration: new insights into CNS disorders. Prion 7(1):28–36CrossRefPubMedPubMedCentralGoogle Scholar
  13. Burke RE (2007) Inhibition of mitogen-activated protein kinase and stimulation of Akt kinase signaling pathways: two approaches with therapeutic potential in the treatment of neurodegenerative disease. Pharmacol Ther 114(3):261–277CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bylund J, Zhang C, Harder DR (2002) Identification of a novel cytochrome P450, CYP4X1, with unique localization specific to the brain. Biochem Biophys Res Commun 296(3):677–684CrossRefPubMedGoogle Scholar
  15. Carmichael W (1992) Cyanobacteria secondary metabolites—the cyanotoxins. J Appl Microbiol 72(6):445–459Google Scholar
  16. Charles, N. A., E. C. Holland, R. Gilbertson, R. Glass and H. Kettenmann (2011). The brain tumor microenvironment. Glia 59(8):1169–80Google Scholar
  17. Chiu AS, Gehringer MM, Braidy N, Guillemin GJ, Welch JH, Neilan BA (2012) Excitotoxic potential of the cyanotoxin β-methyl-amino-l-alanine (BMAA) in primary human neurons. Toxicon 60(6):1159–1165CrossRefPubMedGoogle Scholar
  18. Chiu AS, Gehringer MM, Braidy N, Guillemin GJ, Welch JH, Neilan BA (2013) Gliotoxicity of the cyanotoxin, β-methyl-amino-L-alanine (BMAA). Scientific Reports 3:1482–1482PubMedPubMedCentralGoogle Scholar
  19. Colombo E, Farina C (2012) Star Trk(B): the astrocyte path to neurodegeneration. Cell Cycle 11(12):2225–2226CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cox PA, Richer R, Metcalf JS, Banack SA, Codd GA, Bradley WG (2009) Cyanobacteria and BMAA exposure from desert dust: a possible link to sporadic ALS among Gulf War veterans. Amyotroph Lateral Scler 10(Suppl 2):109–117CrossRefPubMedGoogle Scholar
  21. Crews L, Masliah E (2010) Molecular mechanisms of neurodegeneration in Alzheimer's disease. Hum Mol Genet 19(R1):R12–R20CrossRefPubMedPubMedCentralGoogle Scholar
  22. Critchley DR, Gingras AR (2008) Talin at a glance. J Cell Sci 121(9):1345–1347CrossRefPubMedGoogle Scholar
  23. Di Malta C, Fryer JD, Settembre C, Ballabio A (2012) Astrocyte dysfunction triggers neurodegeneration in a lysosomal storage disorder. Proc Natl Acad Sci U S A 109(35):E2334–E2342CrossRefPubMedPubMedCentralGoogle Scholar
  24. Duester G, Farrés J, Felder MR, Holmes RS, Höög J-O, Parés X, Plapp BV, Yin S-J, Jörnvall H (1999) Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family. Biochem Pharmacol 58(3):389–395CrossRefPubMedGoogle Scholar
  25. Emdad L, Sarkar D, Su ZZ, Lee SG, Kang DC, Bruce JN, Volsky DJ, Fisher PB (2007) Astrocyte elevated gene-1: recent insights into a novel gene involved in tumor progression, metastasis and neurodegeneration. Pharmacol Ther 114(2):155–170CrossRefPubMedPubMedCentralGoogle Scholar
  26. Formichella CR, Abella SK, Sims SM, Cathcart HM, Sappington RM (2014) Astrocyte reactivity: a biomarker for retinal ganglion cell health in retinal neurodegeneration. J Clin Cell Immunol 5(1)Google Scholar
  27. Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, Croitoru J, Brew BJ (2001) Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem 78(4):842–853CrossRefPubMedGoogle Scholar
  28. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Hardy J, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Schurmann B, Heun R, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frolich L, Hampel H, Hull M, Rujescu D, Goate AM, Kauwe JSK, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Muhleisen TW, Nothen MM, Moebus S, Jockel K-H, Klopp N, Wichmann HE, Carrasquillo MM, Pankratz VS, Younkin SG, Holmans PA, O'Donovan M, Owen MJ, Williams J (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genet 41(10):1088–1093CrossRefPubMedPubMedCentralGoogle Scholar
  29. Heneka MT, Rodríguez JJ, Verkhratsky A (2010) Neuroglia in neurodegeneration. Brain Res Rev 63(1–2):189–211CrossRefPubMedGoogle Scholar
  30. Holmquist L, Stuchbury G, Berbaum K, Muscat S, Young S, Hager K, Engel J, Münch G (2007) Lipoic acid as a novel treatment for Alzheimer's disease and related dementias. Pharmacol Ther 113(1):154–164CrossRefPubMedGoogle Scholar
  31. Ikegawa S, Sano M, Koshizuka Y, Nakamura Y (2000) Isolation, characterization and mapping of the mouse and human PRG2 (proteoglycan 4) genes. Cytogenet Cell Genet 90(3/4):291–297CrossRefPubMedGoogle Scholar
  32. Islam R, Kumimoto EL, Bao H, Zhang B (2012) ALS-linked SOD1 in glial cells enhances ss-N-Methylamino L-Alanine (BMAA)-induced toxicity in Drosophila. F1000Res 1:47PubMedPubMedCentralGoogle Scholar
  33. Jaworski T, Dewachter I, Lechat B, Croes S, Termont A, Demedts D, Borghgraef P, Devijver H, Filipkowski RK, Kaczmarek L, Kügler S, Van Leuven F (2009) AAV-tau mediates pyramidal neurodegeneration by cell-cycle re-entry without neurofibrillary tangle formation in wild-type mice. PLoS One 4(10):e7280CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jensen PJ, Gunter LB, Carayannopoulos MO (2010) Akt2 modulates glucose availability and downstream apoptotic pathways during development. J Biol Chem 285(23):17673–17680CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jiang X, Edstrom E, Altun M, Ulfhake B (2003) Differential regulation of Shc adaptor proteins in skeletal muscle, spinal cord and forebrain of aged rats with sensorimotor impairment. Aging Cell 2(1):47–57CrossRefPubMedGoogle Scholar
  36. Kamboh MI, Minster RL, Demirci FY, Ganguli M, DeKosky ST, Lopez OL, Barmada MM (2012) Association of CLU and PICALM variants with Alzheimer's disease. Neurobiol Aging 33(3):518–521CrossRefPubMedGoogle Scholar
  37. Koch M, Ramsaransing G, Arutjunyan A, Stepanov M, Teelken A, Heersema D, De Keyser J (2006) Oxidative stress in serum and peripheral blood leukocytes in patients with different disease courses of multiple sclerosis. J Neurol 253:483–487CrossRefPubMedGoogle Scholar
  38. Koh JY, Choi DW (1987) Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods 20(1):83–90CrossRefPubMedGoogle Scholar
  39. Kowalczyk A, Filipkowski RK, Rylski M, Wilczynski GM, Konopacki FA, Jaworski J, Ciemerych MA, Sicinski P, Kaczmarek L (2004) The critical role of cyclin D2 in adult neurogenesis. J Cell Biol 167(2):209–213CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kubik LL, Philbert MA (2015) The role of astrocyte mitochondria in differential regional susceptibility to environmental neurotoxicants: tools for understanding neurodegeneration. Toxicol Sci 144(1):7–16CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflügers Archiv-European Journal of Physiology 460(2):525–542CrossRefPubMedGoogle Scholar
  42. Li, G., W. Yan, F. Cai, C. Li, N. Chen and J. Wang (2011). Spatial learning and memory impairment and pathological change in rats induced by acute exposure to microcystin-LR. Environ ToxicolGoogle Scholar
  43. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795CrossRefPubMedGoogle Scholar
  44. Lin W-H, Huang C-J, Liu M-W, Chang H-M, Chen Y-J, Tai T-Y, Chuang L-M (2001) Cloning, mapping, and characterization of the human Sorbin and SH3 domain containing 1 (SORBS1) gene: a protein associated with c-Abl during insulin signaling in the hepatoma cell line Hep3B. Genomics 74(1):12–20CrossRefPubMedGoogle Scholar
  45. Maidana M, Carlis V, Galhardi FG, Yunes JS, Geracitano LA, Monserrat JM, Barros DM (2006) Effects of microcystins over short-and long-term memory and oxidative stress generation in hippocampus of rats. Chem Biol Interact 159(3):223–234CrossRefPubMedGoogle Scholar
  46. Mandemakers W, Morais VA, De Strooper B (2007) A cell biological perspective on mitochondrial dysfunction in Parkinson disease and other neurodegenerative diseases. J Cell Sci 120(10):1707–1716CrossRefPubMedGoogle Scholar
  47. Melegari SP, Perreault F, Moukha S, Popovic R, Creppy EE, Matias WG (2012) Induction to oxidative stress by saxitoxin investigated through lipid peroxidation in Neuro 2A cells and Chlamydomonas reinhardtii alga. Chemosphere 89(1):38–43CrossRefPubMedGoogle Scholar
  48. Mooijaart SP, van Heemst D, Schreuder J, van Gerwen S, Beekman M, Brandt BW, Eline Slagboom P, Westendorp RGJ (2004) Variation in the SHC1 gene and longevity in humans. Exp Gerontol 39(2):263–268CrossRefPubMedGoogle Scholar
  49. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1):55–63CrossRefPubMedGoogle Scholar
  50. Murch SJ, Cox PA, Banack SA, Steele JC, Sacks OW (2004) Occurrence of beta-methylamino-l-alanine (BMAA) in ALS/PDC patients from Guam. Acta Neurol Scand 110(4):267–269CrossRefPubMedGoogle Scholar
  51. Mure H, Matsuzaki K, Kitazato KT, Mizobuchi Y, Kuwayama K, Kageji T, Nagahiro S (2010) Akt2 and Akt3 play a pivotal role in malignant gliomas. Neuro-Oncology 12(3):221–232CrossRefPubMedGoogle Scholar
  52. Pablo J, Banack SA, Cox PA, Johnson TE, Papapetropoulos S, Bradley WG, Buck A, Mash DC (2009) Cyanobacterial neurotoxin BMAA in ALS and Alzheimer's disease. Acta Neurol Scand 120(4):216–225CrossRefPubMedGoogle Scholar
  53. Peviani, M., M. Tortarolo, E. Battaglia, R. Piva and C. Bendotti (2013) Specific induction of Akt3 in spinal cord motor neurons is neuroprotective in a mouse model of familial amyotrophic lateral sclerosis. Mol Neurobiol 1–13Google Scholar
  54. Rossi D, Volterra A (2009) Astrocytic dysfunction: insights on the role in neurodegeneration. Brain Res Bull 80(4–5):224–232CrossRefPubMedGoogle Scholar
  55. Santa-Maria I, Avila J, Rabano A (2010) Differential gene expression analysis of human entorhinal cortex support a possible role of some extracellular matrix proteins in the onset of Alzheimer disease. Neurosci Lett 468(3):225–228CrossRefPubMedGoogle Scholar
  56. Schaller MD (2001) Paxillin: a focal adhesion-associated adaptor protein. Oncogene 20(44):6459–6472CrossRefPubMedGoogle Scholar
  57. Siesjö BK, Bengtsson F, Grampp W, Theander S (1989) Calcium, excitotoxins, and neuronal death in the brain. Ann N Y Acad Sci 568(1):234–251CrossRefPubMedGoogle Scholar
  58. Slater TF, Sawyer B, Sträuli U (1963) Studies on succinate-tetrazolium reductase systems: III. Points of coupling of four different tetrazolium salts III. Points of coupling of four different tetrazolium salts. Biochim Biophys Acta 77:383–393CrossRefPubMedGoogle Scholar
  59. Smith AR, Shenvi SV, Widlansky M, Suh JH, Hagen TM (2004) Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress. Curr Med Chem 11(9):1135–1146CrossRefPubMedGoogle Scholar
  60. Steup A, Lohrum M, Hamscho N, Savaskan NE, Ninnemann O, Nitsch R, Fujisawa H, Püschel AW, Skutella T (2000) Sema3C and Netrin-1 differentially affect axon growth in the hippocampal formation. Mol Cell Neurosci 15(2):141–155CrossRefPubMedGoogle Scholar
  61. Tamariz E, Díaz-Martínez NE, Díaz NF, García-Peña CM, Velasco I, Varela-Echavarría A (2010) Axon responses of embryonic stem cell-derived dopaminergic neurons to semaphorins 3A and 3C. J Neurosci Res 88(5):971–980PubMedPubMedCentralGoogle Scholar
  62. Tsiperson V, Gruber RC, Goldberg MF, Jordan A, Weinger JG, Macian F, Shafit-Zagardo B (2013) Suppression of inflammatory responses during myelin oligodendrocyte glycoprotein–induced experimental autoimmune encephalomyelitis is regulated by AKT3 signaling. J Immunol 190(4):1528–1539CrossRefPubMedPubMedCentralGoogle Scholar
  63. Turnquist C, Horikawa I, Foran E, Major EO, Vojtesek B, Lane DP, Lu X, Harris BT, Harris CC (2016) p53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration. Cell Death Differ 23(9):1515–1528CrossRefPubMedGoogle Scholar
  64. Vartak-Sharma N, Ghorpade A (2012) Astrocyte elevated gene-1 regulates astrocyte responses to neural injury: implications for reactive astrogliosis and neurodegeneration. J Neuroinflammation 9:195CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wang M, Wang D, Lin L, Hong H (2010) Protein profiles in zebrafish (Danio rerio) brains exposed to chronic microcystin-LR. Chemosphere 81(6):716–724CrossRefPubMedGoogle Scholar
  66. Wang X, Michaelis EK (2010) Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2(12)Google Scholar
  67. Wilson TJ, Slupe AM, Strack S (2013) Cell signaling and mitochondrial dynamics: implications for neuronal function and neurodegenerative disease. Neurobiol Dis 51:13–26CrossRefPubMedGoogle Scholar
  68. Zhang S-J, Zou M, Lu L, Lau D, Ditzel DAW, Delucinge-Vivier C, Aso Y, Descombes P, Bading H (2009) Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity. PLoS Genet 5(8):e1000604CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Fiona D‘Mello
    • 1
  • Nady Braidy
    • 2
  • Helder Marçal
    • 1
  • Gilles Guillemin
    • 3
  • Fanny Rossi
    • 4
    • 5
    • 6
    • 7
  • Mirielle Chinian
    • 8
  • Dominique Laurent
    • 4
    • 5
  • Charles Teo
    • 9
  • Brett A. Neilan
    • 1
  1. 1.School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydneyAustralia
  2. 2.Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of MedicineThe University of New South WalesSydneyAustralia
  3. 3.Faculty of Medicine and Health Science, Neuroinflammation groupMacquarie UniversitySydneyAustralia
  4. 4.Université de Toulouse, UPS, UMR-152 (Pharma-Dev)ToulouseFrance
  5. 5.Institut de Recherche pour le Développement (IRD), UMR-152TahitiFrench Polynesia
  6. 6.Pacific Biotech SASTahitiFrench Polynesia
  7. 7.Ecosystèmes Insulaires Océaniens, UMR-241Université de la Polynésie françaiseTahitiFrench Polynesia
  8. 8.Ecosystèmes Insulaires Océaniens UMR-241, Institut Louis Malardé, Laboratoire de recherche sur les Microalgues ToxiquesTahitiFrench Polynesia
  9. 9.Minimally Invasive Cancer CentrePrince of Wales HospitalSydneyAustralia

Personalised recommendations