Advertisement

Neurotoxicity Research

, Volume 30, Issue 1, pp 101–109 | Cite as

Metformin Prevented Dopaminergic Neurotoxicity Induced by 3,4-Methylenedioxymethamphetamine Administration

  • Pier Francesca PorcedduEmail author
  • Ismail Ogunbayode Ishola
  • Liliana Contu
  • Micaela Morelli
Original Article

Abstract

Metformin, a well-known antidiabetic drug, has recently been proposed to promote neurogenesis and to have a neuroprotective effect on the neurodegenerative processes induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in models of Parkinson’s disease. Interestingly, metformin has antioxidant properties and is involved in regulating the production of cytokines released during the neuroinflammatory process. Several studies have reported that 3,4-methylenedioxymethamphetamine (MDMA), a recreational drug mostly consumed by young adults, produces a persistent loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) and caudate putamen (CPu) of mice. The aim of this study was to investigate the potential neuroprotective effect of metformin against short- and long-term neurotoxicity induced by MDMA and its role on MDMA-induced hyperthermia. Adult mice received metformin (2 × 200 mg/kg, 11-h intervals, administered orally), MDMA (4 × 20 mg/kg, 2-h interval, administered intraperitoneally), or MDMA plus metformin (2 × 200 mg/kg, 1 h before the first MDMA administration and 4 h after the last). On the second and third day, mice were treated with vehicle or metformin (1 × 200 mg/kg) and sacrificed 48 h and 7 days after the last MDMA administration. The neuroprotective effect of metformin on MDMA-induced dopaminergic damage was evaluated by dopamine transporter (DAT) and tyrosine hydroxylase (TH) immunohistochemistry in SNc and CPu. Metformin prevented the MDMA-induced loss of TH-positive neurons in the SNc and TH- and DAT-positive fibers in CPu, both at 48 h and 7 days after the last MDMA administration. These results show that metformin is neuroprotective against the short- and long-lasting dopaminergic neurodegeneration induced by MDMA.

Keywords

Neuroprotection Tyrosine hydroxylase Caudate putamen Substantia nigra Neurodegeneration MDMA 

Notes

Acknowledgments

The authors appreciate the IBRO-ARC short stay grant award to Dr. Ishola IO. This study was supported by funds from Regione Autonoma della Sardegna (Legge Regionale 7 Agosto 2007, N.7, annualità 2010). Dr. Pier Francesca Porceddu gratefully acknowledges the Sardinian Regional Government for financial support (Legge Regionale 7 Agosto 2007, N.7, annualità 2010). Dr. Liliana Contu gratefully acknowledges the University of Cagliari for the financial support (D.R. n. 269 2014). The authors are grateful to prof. Antonio Plumitallo for the synthesis of MDMA.

References

  1. Adeyemi OO, Ishola IO, Adedeji HA (2013) Novel action of metformin in the prevention of haloperidol-induced catalepsy in mice: potential in the treatment of Parkinson’s disease? Prog Neuropsychopharmacol Biol Psychiatry S0278–5846(13):00235-2Google Scholar
  2. Amato S, Man HY (2011) Bioenergy sensing in the brain: the role of AMP-activated protein kinase in neuronal metabolism, development and neurological diseases. Cell Cycle 10(20):3452–3460CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barcia C, Fernandez Barreiro A, Poza M, Herrero MT (2003) Parkinson’s disease and inflammatory changes. Neurotox Res 5:411–418CrossRefPubMedGoogle Scholar
  4. Baylen CA, Rosenberg H (2006) A review of the acute subjective effects of MDMA/ecstasy. Addiction 101(7):933–947CrossRefPubMedGoogle Scholar
  5. Brust JC (2010) Substance abuse and movement disorders. Mov Disord 25:2010–2020. doi: 10.1002/mds.22599 CrossRefPubMedGoogle Scholar
  6. Cadet JL, Krasnova IN, Jayanthi S, Lyles J (2007) Neurotoxicity of substituted amphetamines: molecular and cellular mechanisms. Neurotox Res 11(3–4):183–202CrossRefPubMedGoogle Scholar
  7. Callaghan RC, Cunningham JK, Sykes J, Kish SJ (2012) Increased risk of Parkinson’s disease in individuals hospitalized with conditions related to the use of methamphetamine or other amphetamine-type drugs. Drug Alcohol Depend 120:35–40CrossRefPubMedGoogle Scholar
  8. Capela JP, Carmo H, Remião F, Bastos ML, Meisel A, Carvalho F (2009) Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: an overview. Mol Neurobiol 39(3):210–271CrossRefPubMedGoogle Scholar
  9. Chakraborty A, Chowdhury S, Bhattacharyya M (2011) Effect of metformin on oxidative stress, nitrosative stress and inflammatory biomarkers in type 2 diabetes patients. Diabetes Res Clin Pract 96:53–62Google Scholar
  10. Choi JS, Park C, Jeong JW (2010) AMP-activated protein kinase is activated in Parkinson’s disease models mediated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Biochem Biophys Res Commun 391(1):147–151CrossRefPubMedGoogle Scholar
  11. Christine CW, Garwood ER, Schrock LE, Austin DE, McCulloch CE (2010) Parkinsonism in patients with a history of amphetamine exposure. Mov Disord 25:228–231CrossRefPubMedPubMedCentralGoogle Scholar
  12. Colado M, Williams J, Green A (1995) The hyperthermic and neurotoxic effects of “ecstasy” (MDMA) and 3,4 methylenedioxyamphetamine (MDA) in the dark agouti (DA) rat, a model of the cyp2d6 poor metabolizer phenotype. Br J Pharmacol 115:1281–1289CrossRefPubMedPubMedCentralGoogle Scholar
  13. Colado MI, Granados R, O’Shea E, Esteban B, Green AR (1998) Role of hyperthermia in the protective action of chlomethiazole against MDMA (“ecstasy”)-induced neurodegeneration, comparison with the novel NMDA channel blocker AR-R15896AR. Br J Pharmacol 124:479–484CrossRefPubMedPubMedCentralGoogle Scholar
  14. Commins DL, Vosmer G, Virus RM, Woolverton WL, Schuster CR, Seiden LS (1987) Biochemical and histological evidence that methylenedioxymethylamphetamine (MDMA) is toxic to neurons in the rat brain. J Pharmacol Exp Ther 241:338–345PubMedGoogle Scholar
  15. Costa G, Frau L, Wardas J, Pinna A, Plumitallo A, Morelli M (2013) MPTP-induced dopamine neuron degeneration and glia activation is potentiated in MDMA-pretreated mice. Mov Disord 28:1957–1965CrossRefPubMedGoogle Scholar
  16. Curtin K, Fleckenstein AE, Robison RJ, Crookston MJ, Smith KR, Hanson GR (2015) Methamphetamine/amphetamine abuse and risk of Parkinson’s disease in Utah: a population-based assessment. Drug Alcohol Depend 146:30–38CrossRefPubMedGoogle Scholar
  17. Emsley JG, Mitchell BD, Kempermann G, Macklis JD (2005) Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol 75(5):321–341CrossRefPubMedGoogle Scholar
  18. Fasano C, Poirier A, DesGroseillers L, Trudeau LE (2008) Chronic activation of the D2 dopamine autoreceptor inhibits synaptogenesis in mesencephalic dopaminergic neurons in vitro. Eur J Neurosci 28:1480–1490CrossRefPubMedGoogle Scholar
  19. Frau L, Borsini F, Wardas J, Khairnar AS, Schintu N, Morelli M (2011) Neuroprotective and anti-inflammatory effects of the adenosine A(2A) receptor antagonist ST1535 in a MPTP mouse model of Parkinson’s disease. Synapse 65:181–188CrossRefPubMedGoogle Scholar
  20. Frau L, Simola N, Plumitallo A, Morelli M (2013) Microglial and astroglial activation by 3,4-methylenedioxymethamphetamine (MDMA) in mice depends on S(+) enantiomer and is associated with an increase in body temperature and motility. J Neurochem 124(1):69–78CrossRefPubMedGoogle Scholar
  21. Goffin D, Ali AB, Rampersaud N, Harkavyi A, Fuchs C, Whitton PS, Nairn AC, Jovanovic JN (2010) Dopamine-dependent tuning of striatal inhibitory synaptogenesis. J Neurosci 30:2935–2950CrossRefPubMedPubMedCentralGoogle Scholar
  22. Górska AM, Noworyta-Sokołowska K, Gołembiowska K (2014) The effect of caffeine on MDMA-induced hydroxyl radical production in the mouse striatum. Pharmacol Rep 66:718–721CrossRefPubMedGoogle Scholar
  23. Gouzoulis-Mayfrank E, Daumann J (2006) The confounding problem of polydrug use in recreational ecstasy/MDMA users: a brief overview. J Psychopharmacol 20(2):188–193CrossRefPubMedGoogle Scholar
  24. Granado N, O’Shea E, Bove J, Vila M, Colado MI, Moratalla R (2008) Persistent MDMA-induced dopaminergic neurotoxicity in the striatum and substantia nigra of mice. J Neurochem 107(4):1102–1112PubMedGoogle Scholar
  25. Granado N, Ares-Santos S, Oliva I, O’Shea E, Martin ED, Colado MI, Moratalla R (2011) Dopamine D2-receptor knockout mice are protected against dopaminergic neurotoxicity induced by methamphetamine or MDMA. Neurobiol Dis 42:391–403CrossRefPubMedGoogle Scholar
  26. Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’). Pharmacol Rev 55:463–508CrossRefPubMedGoogle Scholar
  27. Green AR, O’shea E, Colado MI (2004) A review of the mechanisms involved in the acute MDMA (ecstasy)-induced hyperthermic response. Eur J Pharmacol 500:3–13CrossRefPubMedGoogle Scholar
  28. Itzhak Y, Ali SF, Achat CN, Anderson KL (2003) Relevance of MDMA (“ecstasy”)-induced neurotoxicity to long-lasting psychomotor stimulation in mice. Psychopharmacology 166:241–248PubMedGoogle Scholar
  29. Kerschensteiner M, Meinl E, Hohlfeld R (2009) Neuro-immune crosstalk in CNS diseases. Neuroscience 158:1122–1132CrossRefPubMedGoogle Scholar
  30. Khairnar A, Plumitallo A, Frau L, Schintu N, Morelli M (2010) Caffeine enhances astroglia and microglia reactivity induced by 3,4-methylenedioxymethamphetamine (‘ecstasy’) in mouse brain. Neurotox Res 17(4):435–439CrossRefPubMedGoogle Scholar
  31. Kindlundh-Högberg AM, Schiöth HB, Svenningsson P (2007) Repeated intermittent MDMA binges reduce DAT density in mice and SERT density in rats in reward regions of the adolescent brain. Neurotoxicology 28:1158–1169CrossRefPubMedGoogle Scholar
  32. Labuzek K, Liber S, Gabryel B, Okopien B (2010) Metformin has adenosine-monophosphate activated protein kinase (AMPK)-independent effects on LPS-stimulated rat primary microglial cultures. Pharmacol Rep 62:827–848CrossRefPubMedGoogle Scholar
  33. Ma TC, Buescher JL, Oatis B, Funk JA, Nash AJ, Carrier RL, Hoyt KR (2007) Metformin therapy in a transgenic mouse model of Huntington’s disease. Neurosci Lett 411:98–103CrossRefPubMedGoogle Scholar
  34. Mechan AO, O’Shea E, Elliott JM, Colado MI, Green AR (2001) A neurotoxic dose of 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) to rats results in a long-term defect in thermoregulation. Psychopharmacology 155(4):413–418CrossRefPubMedGoogle Scholar
  35. Meredith GE, Kang UJ (2006) Behavioral models of Parkinson’s disease in rodents: a new look at an old problem. Mov Disord 21(10):1595–1606CrossRefPubMedGoogle Scholar
  36. Miller DB, O’Callaghan JP (1995) The role of temperature, stress, and other factors in the neurotoxicity of the substituted amphetamines 3,4-methylenedioxymethamphetamine and fenfluramine. Mol Neurobiol 11:177–192CrossRefPubMedGoogle Scholar
  37. Moratalla R, Khairnar A, Simola N, Granado N, García-Montes JR, Porceddu PF, Tizabi Y, Costa G, Morelli M (2015) Amphetamine-related drugs neurotoxicity in humans and in experimental animals: Main mechanisms. Prog Neurobiol doi: 10.1016/j.pneurobio.2015.09.011 PubMedGoogle Scholar
  38. Ng CH, Guan MS, Koh C, Ouyang X, Yu F, Tan EK, O’Neill SP, Zhang X, Chung J, Lim KL (2012) AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson’s disease. J Neurosci 32(41):14311–14317CrossRefPubMedGoogle Scholar
  39. O’Callaghan JP, Miller DB (1994) Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther 270(2):741–751PubMedGoogle Scholar
  40. Patil SP, Jain PD, Ghumatkar PJ, Tambe R, Sathaye S (2014) Neuroprotective effect of metformin in MPTP-induced Parkinson’s disease in mice. Neuroscience 26(277):747–754CrossRefGoogle Scholar
  41. Paxinos G, Franklin KBJ (eds) (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, San DiegoGoogle Scholar
  42. Phani S, Loike JD, Przedborski S (2012) Neurodegeneration and inflammation in Parkinson’s disease. Parkinsonism Relat Disord 18:S207–S209CrossRefPubMedGoogle Scholar
  43. Piech-Dumas KM, Tank AW (1999) CREB mediates the cAMPresponsiveness of the tyrosine hydroxylase gene: use of an antisense RNA strategy to produce CREB-deficient PC12 cell lines. Brain Res Mol Brain Res 70:219–230CrossRefPubMedGoogle Scholar
  44. Portela LV, Gnoatto J, Brochier AW, Haas CB, de Assis AM, de Carvalho AK, Hansel G, Zimmer ER, Oses JP, Muller AP (2015) Intracerebroventricular metformin decreases body weight but has pro-oxidant effects and decreases survival. Neurochem Res 40(3):514–523CrossRefPubMedGoogle Scholar
  45. Potts MB, Lim DA (2012) An old drug for new ideas: metformin promotes adult neurogenesis and spatial memory formation. Cell Stem Cell 11(1):5–6CrossRefPubMedPubMedCentralGoogle Scholar
  46. Puerta E, Hervias I, Goñi-Allo B, Zhang SF, Jordán J, Starkov AA, Aguirre N (2010) Methylenedioxymethamphetamine inhibits mitochondrial complex I activity in mice: a possible mechanism underlying neurotoxicity. Br J Pharmacol 160:233–245CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ricaurte GA, DeLanney LE, Irwin I, Langston JW (1988) Toxic effects of MDMA on central serotonergic neurons in the primate: importance of route and frequency of drug administration. Brain Res 446:165–168CrossRefPubMedGoogle Scholar
  48. Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108:511–533CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sakamoto K, Karelina K, Obrietan K (2011) CREB: a multifaceted regulator of neuronal plasticity and protection. J Neurochem 116:1–9CrossRefPubMedGoogle Scholar
  50. Shankaran M, Gudelsky GA (1999) A neurotoxic regimen of MDMA suppresses behavioral, thermal and neurochemical responses to subsequent MDMA administration. Psychopharmacology 147:66–72CrossRefPubMedGoogle Scholar
  51. Sprague JE, Everman SL, Nichols DE (1998) An integrated hypothesis for the serotonergic axonal loss induced by 3,4-methylenedioxymethamphetamine. Neurotoxicology 19:427–441PubMedGoogle Scholar
  52. Thomas DM, Dowgiert J, Geddes TJ, Francescutti-Verbeem D, Liu X, Kuhn DM (2004) Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines. Neurosci Lett 367:349–354CrossRefPubMedGoogle Scholar
  53. Touriño C, Zimmer A, Valverde O (2010) THC Prevents MDMA neurotoxicity in mice. PLoS ONE 5(2):e9143CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wahlqvist ML, Lee MS, Hsu CC, Chuang SY, Lee JT, Tsai HN (2012) Metformin-inclusive sulfonylurea therapy reduces the risk of Parkinson’s disease occurring with Type 2 diabetes in a Taiwanese population cohort. Parkinsonism Relat Disord 18(6):753–758CrossRefPubMedGoogle Scholar
  55. Wang J, Gallagher D, DeVito LM, Cancino GI, Tsui D, He L, Keller GM, Frankland PW, Kaplan DR, Miller FD (2012) Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell 11(1):23–35CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Pier Francesca Porceddu
    • 1
    Email author
  • Ismail Ogunbayode Ishola
    • 2
  • Liliana Contu
    • 1
  • Micaela Morelli
    • 1
    • 3
  1. 1.Department of Biomedical Sciences, Section of NeuropsychopharmacologyUniversity of CagliariCagliariItaly
  2. 2.Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of MedicineUniversity of LagosLagosNigeria
  3. 3.CNR, Institute of NeuroscienceCagliariItaly

Personalised recommendations