Neurotoxicity Research

, Volume 29, Issue 4, pp 583–593 | Cite as

The HIV Protein gp120 Alters Mitochondrial Dynamics in Neurons

  • Valeria Avdoshina
  • Jerel Adam Fields
  • Paul Castellano
  • Simona Dedoni
  • Guillermo Palchik
  • Margarita Trejo
  • Anthony Adame
  • Edward Rockenstein
  • Eliseo Eugenin
  • Eliezer Masliah
  • Italo Mocchetti
Original Article

Abstract

Neurotoxicity of human immunodeficiency virus-1 (HIV) includes synaptic simplification and neuronal apoptosis. However, the mechanisms of HIV-associated neurotoxicity remain unclear, thus precluding an effective treatment of the neurological complications. The present study was undertaken to characterize novel mechanisms of HIV neurotoxicity that may explain how HIV subjects develop neuronal degeneration. Several neurodegenerative disorders are characterized by mitochondrial dysfunction; therefore, we hypothesized that HIV promotes mitochondrial damage. We first analyzed brains from HIV encephalitis (HIVE) by electron microscopy. Several sections of HIVE subjects contained enlarged and damaged mitochondria compared to brains from HIV subjects with no neurological complications. Similar pathologies were observed in mice overexpressing the HIV protein gp120, suggesting that this viral protein may be responsible for mitochondrial pathology found in HIVE. To gain more information about the cellular mechanisms of gp120 neurotoxicity, we exposed rat cortical neurons to gp120 and we determined cellular oxygen consumption rate, mitochondrial distribution, and trafficking. Our data show that gp120 evokes impairment in mitochondrial function and distribution. These data suggest that one of the mechanisms of HIV neurotoxicity includes altered mitochondrial dynamics in neurons.

Keywords

Gp120ADA Fis-1 HIVE Mitochondrial respiration Oxygen consumption Tom 20 

Supplementary material

Supplementary material 1 Rat cortical neurons were labeled with MitoTracker deep red for 15 min to visualize mitochondria prior to time-lapse imaging. Brightfield and MitoTracker fluorescence were used to follow mitochondrial movement in neuronal processes. Time-lapse interval (TLI) and total duration (TD) of time-lapse footage are indicated. A. Control neurons (UT). Please note that some mitochondria are continuously traveling along neuronal processes. B. Neurons exposed to gp120ADA (5 nM). Please note that mitochondria stop moving within 5–10 s after the addition of gp120 (indicated by asterisks). White arrows indicate neurite blebbing. (MP4 11229 kb)

References

  1. Avdoshina V, Biggio F, Palchik G, Campbell LA, Mocchetti I (2010) Morphine induces the release of CCL5 from astrocytes: potential neuroprotective mechanism against the HIV protein gp120. Glia 58:1630–1639. doi:10.1002/glia.21035 PubMedPubMedCentralGoogle Scholar
  2. Bachis A, Major EO, Mocchetti I (2003) Brain-derived neurotrophic factor inhibits human immunodeficiency virus-1/gp120-mediated cerebellar granule cell death by preventing gp120 internalization. J Neurosci 23:5715–5722PubMedGoogle Scholar
  3. Bachis A, Aden SA, Nosheny RL, Andrews PM, Mocchetti I (2006) Axonal transport of human immunodeficiency virus type 1 envelope protein glycoprotein 120 is found in association with neuronal apoptosis. J Neurosci 26:6771–6780. doi:10.1523/JNEUROSCI.1054-06.2006 CrossRefPubMedGoogle Scholar
  4. Bennett GJ, Doyle T, Salvemini D (2014) Mitotoxicity in distal symmetrical sensory peripheral neuropathies. Nat Rev Neurol 10:326–336. doi:10.1038/nrneurol.2014.77 CrossRefPubMedGoogle Scholar
  5. Berth S, Caicedo HH, Sarma T, Morfini G, Brady ST (2015) Internalization and axonal transport of the HIV glycoprotein gp120. ASN Neuro. doi:10.1177/1759091414568186 PubMedPubMedCentralGoogle Scholar
  6. Berthet A et al (2014) Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons. J Neurosci 34:14304–14317. doi:10.1523/JNEUROSCI.0930-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Burte F, Carelli V, Chinnery PF, Yu-Wai-Man P (2015) Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol 11:11–24. doi:10.1038/nrneurol.2014.228 CrossRefPubMedGoogle Scholar
  8. Chang DT, Rintoul GL, Pandipati S, Reynolds IJ (2006) Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons. Neurobiol Dis 22:388–400. doi:10.1016/j.nbd.2005.12.007 CrossRefPubMedGoogle Scholar
  9. Chen H, Chan DC (2009) Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Hum Mol Genet 18:R169–R176. doi:10.1093/hmg/ddp326 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Costa V et al (2010) Mitochondrial fission and cristae disruption increase the response of cell models of Huntington’s disease to apoptotic stimuli. EMBO Mol Med 2:490–503. doi:10.1002/emmm.201000102 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Davies J, Everall IP, Weich S, McLaughlin J, Scaravilli F, Lantos PL (1997) HIV-associated brain pathology in the United Kingdom: an epidemiological study. AIDS 11:1145–1150CrossRefPubMedGoogle Scholar
  12. Dickey AS, Strack S (2011) PKA/AKAP1 and PP2A/Bbeta2 regulate neuronal morphogenesis via Drp1 phosphorylation and mitochondrial bioenergetics. J Neurosci 31:15716–15726. doi:10.1523/JNEUROSCI.3159-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ellis R, Langford D, Masliah E (2007) HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci 8:33–44CrossRefPubMedGoogle Scholar
  14. Everall IP, Hansen LA, Masliah E (2005) The shifting patterns of HIV encephalitis neuropathology. Neurotox Res 8:51–61CrossRefPubMedGoogle Scholar
  15. Everall I et al (2009) Cliniconeuropathologic correlates of human immunodeficiency virus in the era of antiretroviral therapy. J Neurovirol 15:360–370. doi:10.3109/13550280903131915 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fields JA et al (in press) HIV alters neuronal mitochondrial fission/fusion in the brain during HIV-associated neurocognitive disorders. Neurobiol AgingGoogle Scholar
  17. Garden GA et al (2004) HIV associated neurodegeneration requires p53 in neurons and microglia. Faseb J 18:1141–1143PubMedGoogle Scholar
  18. Gelman BB (2015) Neuropathology of HAND with suppressive antiretroviral therapy: encephalitis and neurodegeneration reconsidered. Curr HIV/AIDS Rep 12:272–279. doi:10.1007/s11904-015-0266-8 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gleichmann M, Mattson MP (2011) Neuronal calcium homeostasis and dysregulation. Antioxid Redox Signal 14:1261–1273. doi:10.1089/ars.2010.3386 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gorry PR et al (2001) Macrophage tropism of human immunodeficiency virus type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of coreceptor specificity. J Virol 75:10073–10089CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hanson B, Nuttal S, Hoogenraad N (1996) A receptor for the import of proteins into human mitochondria. Eur J Biochem 235:750–753CrossRefPubMedGoogle Scholar
  22. Hashimoto M, Sagara Y, Everall IP, Mallory M, Everson A, Langford D, Masliah E (2002) Fibroblast growth factor 1 regulates signaling via the GSK3{beta} pathway: implications for neuroprotection. J Biol Chem 277:32985–32991CrossRefPubMedGoogle Scholar
  23. Haughey NJ, Mattson MP (2002) Calcium dysregulation and neuronal apoptosis by the HIV-1 proteins Tat and gp120. J Acquir Immune Defic Syndr 31(Suppl 2):S55–61CrossRefPubMedGoogle Scholar
  24. Huang B, Jones SA, Brandenburg B, Zhuang X (2008) Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat Methods 5:1047–1052. doi:10.1038/nmeth.1274 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Itoh K, Nakamura K, Iijima M, Sesaki H (2013) Mitochondrial dynamics in neurodegeneration. Trends Cell Biol 23:64–71. doi:10.1016/j.tcb.2012.10.006 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kaul M (2008) HIV’s double strike at the brain: neuronal toxicity and compromised neurogenesis. Front Biosci 13:2484–2494CrossRefPubMedPubMedCentralGoogle Scholar
  27. Khan MZ et al (2005) Regulation of neuronal P53 activity by CXCR4. Mol Cell Neurosci 30:58–66CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lee YJ, Jeong SY, Karbowski M, Smith CL, Youle RJ (2004) Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 15:5001–5011. doi:10.1091/mbc.E04-04-0294 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Levy M, Faas GC, Saggau P, Craigen WJ, Sweatt JD (2003) Mitochondrial regulation of synaptic plasticity in the hippocampus. J Biol Chem 278:17727–17734. doi:10.1074/jbc.M212878200 CrossRefPubMedGoogle Scholar
  30. Li Z, Okamoto K, Hayashi Y, Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119:873–887. doi:10.1016/j.cell.2004.11.003 CrossRefPubMedGoogle Scholar
  31. Li W, Galey D, Mattson MP, Nath A (2005) Molecular and cellular mechanisms of neuronal cell death in HIV dementia. Neurotox Res 8:119–134CrossRefPubMedGoogle Scholar
  32. Masliah E et al (2003) Abeta1-42 promotes cholinergic sprouting in patients with AD and Lewy body variant of AD. Neurology 61:206–211CrossRefPubMedGoogle Scholar
  33. Mattson MP, Haughey NJ, Nath A (2005) Cell death in HIV dementia. Cell Death Differ 12(Suppl 1):893–904. doi:10.1038/sj.cdd.4401577 CrossRefPubMedGoogle Scholar
  34. Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60:748–766. doi:10.1016/j.neuron.2008.10.010 CrossRefPubMedPubMedCentralGoogle Scholar
  35. McArthur JC, Brew BJ, Nath A (2005) Neurological complications of HIV infection. Lancet Neurol 4:543–555CrossRefPubMedGoogle Scholar
  36. Merrill RA, Dagda RK, Dickey AS, Cribbs JT, Green SH, Usachev YM, Strack S (2011) Mechanism of neuroprotective mitochondrial remodeling by PKA/AKAP1. PLoS Biol 9:e1000612. doi:10.1371/journal.pbio.1000612 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mocchetti I et al (2014) Human immunodeficiency virus-associated dementia: a link between accumulation of viral proteins and neuronal degeneration. Curr Trends Neurol 8:71–85PubMedPubMedCentralGoogle Scholar
  38. Opii WO, Sultana R, Abdul HM, Ansari MA, Nath A, Butterfield DA (2007) Oxidative stress and toxicity induced by the nucleoside reverse transcriptase inhibitor (NRTI)–2′,3′-dideoxycytidine (ddC): relevance to HIV-dementia. Exp Neurol 204:29–38. doi:10.1016/j.expneurol.2006.09.010 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Pekkurnaz G, Pekkurnaz G, Pekkurnaz G, Pekkurnaz G, Pekkurnaz G (2014) Glucose regulates mitochondrial motility via milton modification by O-GlcNAc transferase. Cell 158:54–68. doi:10.1016/j.cell.2014.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Rapaport D (2005) How does the TOM complex mediate insertion of precursor proteins into the mitochondrial outer membrane? J Cell Biol 171:419–423. doi:10.1083/jcb.200507147 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Rockenstein E, Mallory M, Mante M, Sisk A, Masliah E (2001) Early formation of mature amyloid-b proteins deposits in a mutant APP transgenic model depends on levels of Ab1-42. J Neurosci Res 66:573–582CrossRefPubMedGoogle Scholar
  42. Sheng ZH (2014) Mitochondrial trafficking and anchoring in neurons: New insight and implications. J Cell Biol 204:1087–1098. doi:10.1083/jcb.201312123 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Sheng Z-H, Cai Q (2012) Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration Nat Rev Neurosci 13:77–93. http://www.nature.com/nrn/journal/v13/n2/suppinfo/nrn3156_S1.html
  44. Shirendeb UP et al (2012) Mutant huntingtin’s interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington’s disease. Hum Mol Genet 21:406–420. doi:10.1093/hmg/ddr475 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Song W et al (2011) Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat Med 17:377–382. doi:10.1038/nm.2313 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Spudich S, Gonzalez-Scarano F (2012) HIV-1-related central nervous system disease: current issues in pathogenesis, diagnosis, and treatment. Cold Spring Harb Perspect Med 2:a007120. doi:10.1101/cshperspect.a007120 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Stojanovski D, Koutsopoulos OS, Okamoto K, Ryan MT (2004) Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology. J Cell Sci 117:1201–1210. doi:10.1242/jcs.01058 CrossRefPubMedGoogle Scholar
  48. Teodorof C, Divakar S, Soontornniyomkij B, Achim CL, Kaul M, Singh KK (2014) Intracellular mannose binding lectin mediates subcellular trafficking of HIV-1 gp120 in neurons. Neurobiol Dis 69:54–64. doi:10.1016/j.nbd.2014.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Thomas JB, Brier MR, Snyder AZ, Vaida FF, Ances BM (2013) Pathways to neurodegeneration: effects of HIV and aging on resting-state functional connectivity. Neurology 80:1186–1193. doi:10.1212/WNL.0b013e318288792b CrossRefPubMedPubMedCentralGoogle Scholar
  50. Toggas SM, Masliah E, Rockenstein EM, Rall GF, Abraham CR, Mucke L (1994) Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature 367:188–193CrossRefPubMedGoogle Scholar
  51. Valcour VG (2013) HIV, aging, and cognition: emerging issues. Top Antivir Med 21:119–123PubMedGoogle Scholar
  52. van der Bliek AM, Shen Q, Kawajiri S (2013) Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a011072 PubMedPubMedCentralGoogle Scholar
  53. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407. doi:10.1146/annurev.genet.39.110304.095751 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wang JT, Medress ZA, Barres BA (2012) Axon degeneration: molecular mechanisms of a self-destruction pathway. J Cell Biol 196:7–18. doi:10.1083/jcb.201108111 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884. doi:10.1038/nrm3013 CrossRefPubMedGoogle Scholar
  56. Wiley CA, Achim C (1994) Human immunodeficiency virus encephalitis is the pathological correlate of dementia in acquired immunodeficiency syndrome. Ann Neurol 36:673–676CrossRefPubMedGoogle Scholar
  57. Yoon YS et al (2006) Formation of elongated giant mitochondria in DFO-induced cellular senescence: involvement of enhanced fusion process through modulation of Fis1. J Cell Physiol 209:468–480. doi:10.1002/jcp.20753 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Valeria Avdoshina
    • 1
  • Jerel Adam Fields
    • 2
  • Paul Castellano
    • 3
  • Simona Dedoni
    • 1
  • Guillermo Palchik
    • 4
  • Margarita Trejo
    • 2
  • Anthony Adame
    • 2
  • Edward Rockenstein
    • 2
  • Eliseo Eugenin
    • 3
  • Eliezer Masliah
    • 2
    • 5
  • Italo Mocchetti
    • 1
  1. 1.Laboratory of Preclinical Neurobiology, Department of NeuroscienceGeorgetown University Medical CenterWashingtonUSA
  2. 2.Department of PathologyUniversity of California San DiegoLa JollaUSA
  3. 3.Department of Microbiology and Molecular Genetics, Public Health Research Institute Center and at the International Center for Public Health New Jersey Medical School - RutgersThe State University of New JerseyNewarkUSA
  4. 4.Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasUSA
  5. 5.Department of NeurosciencesUniversity of California San DiegoLa JollaUSA

Personalised recommendations