Advertisement

Neurotoxicity Research

, Volume 29, Issue 4, pp 514–524 | Cite as

Efficacy of Human Adipose Tissue-Derived Stem Cells on Neonatal Bilirubin Encephalopathy in Rats

  • Naser Amini
  • Nasim Vousooghi
  • Mahmoudreza Hadjighassem
  • Mehrdad Bakhtiyari
  • Neda Mousavi
  • Hosein Safakheil
  • leila Jafari
  • Arash Sarveazad
  • Abazar Yari
  • Sara Ramezani
  • Faezeh Faghihi
  • Mohammad Taghi JoghataeiEmail author
Original Article

Abstract

Kernicterus is a neurological syndrome associated with indirect bilirubin accumulation and damages to the basal ganglia, cerebellum and brain stem nuclei particularly the cochlear nucleus. To mimic haemolysis in a rat model such that it was similar to what is observed in a preterm human, we injected phenylhydrazine in 7-day-old rats to induce haemolysis and then infused sulfisoxazole into the same rats at day 9 to block bilirubin binding sites in the albumin. We have investigated the effectiveness of human adiposity-derived stem cells as a therapeutic paradigm for perinatal neuronal repair in a kernicterus animal model. The level of total bilirubin, indirect bilirubin, brain bilirubin and brain iron was significantly increased in the modelling group. There was a significant decreased in all severity levels of the auditory brainstem response test in the two modelling group. Akinesia, bradykinesia and slip were significantly declined in the experience group. Apoptosis in basal ganglia and cerebellum were significantly decreased in the stem cell-treated group in comparison to the vehicle group. All severity levels of the auditory brainstem response tests were significantly decreased in 2-month-old rats. Transplantation results in the substantial alleviation of walking impairment, apoptosis and auditory dysfunction. This study provides important information for the development of therapeutic strategies using human adiposity-derived stem cells in prenatal brain damage to reduce potential sensori motor deficit.

Keywords

Stem cell Kernicterus Phenyl hydrazine Sulfisoxazole 

Notes

Acknowledgments

The authors declare that they do not have any conflict of interests. This study was financially supported by the Grant No. 24317 from Iran University of Medical Sciences.

Compliance with Ethical Standards

Conflict of interest

No conflict of interest exists in the submission of this manuscript.

References

  1. Allbutt HN, Henderson JM (2007) Use of the narrow beam test in the rat, 6-hydroxydopamine model of Parkinson’s disease. J Neurosci Methods 159(2):195–202CrossRefPubMedGoogle Scholar
  2. American Academy of Pediatrics Subcommittee on Hyperbilirubinemia (2004) Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics 114(1):297CrossRefGoogle Scholar
  3. Barritt A, Davies M et al (2006) Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury. J Neurosci 26(42):10856–10867CrossRefPubMedPubMedCentralGoogle Scholar
  4. Blatchley B, Cooper W et al (1987) Development of auditory brainstem response to tone pip stimuli in the rat. Dev Brain Res 32(1):75–84CrossRefGoogle Scholar
  5. Bona E, Andersson A-L et al (1999) Chemokine and inflammatory cell response to hypoxia-ischemia in immature rats. Pediatr Res 45:500–509CrossRefPubMedGoogle Scholar
  6. Bradbury EJ, Moon LD et al (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416(6881):636–640CrossRefPubMedGoogle Scholar
  7. Cetin BS, Yesilirmak D et al (2009) Can curry protect the brain from bilirubin toxicity? Med Hypotheses 72(6):757–758CrossRefPubMedGoogle Scholar
  8. Chen J, Sanberg PR et al (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32(11):2682–2688CrossRefPubMedGoogle Scholar
  9. Coleman B, De Silva MG et al (2007) Concise review: the potential of stem cells for auditory neuron generation and replacement. Stem Cells 25(11):2685–2694CrossRefPubMedGoogle Scholar
  10. Corvetti L, Rossi F (2005) Degradation of chondroitin sulfate proteoglycans induces sprouting of intact purkinje axons in the cerebellum of the adult rat. J Neurosci 25(31):7150–7158CrossRefPubMedGoogle Scholar
  11. Dubois SG, Floyd EZ et al (2008) Isolation of human adipose-derived stem cells from biopsies and liposuction specimens. Springer, Mesenchymal Stem Cells, pp 69–79Google Scholar
  12. Dyer J, Bourque J et al (2005) The role of complement in immunological demyelination of the mammalian spinal cord. Spinal cord 43(7):417–425CrossRefPubMedGoogle Scholar
  13. Fitsanakis VA, Zhang N et al (2008) Measuring brain manganese and iron accumulation in rats following 14 weeks of low-dose manganese treatment using atomic absorption spectroscopy and magnetic resonance imaging. Toxicol Sci 103(1):116–124CrossRefPubMedGoogle Scholar
  14. Gluckman PD, Wyatt JS et al (2005) Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 365(9460):663–670CrossRefPubMedGoogle Scholar
  15. Hamrick SE, Ferriero DM (2003) The injury response in the term newborn brain: can we neuroprotect? Curr Opin Neurol 16(2):147–154CrossRefPubMedGoogle Scholar
  16. Hansen TW (2002a) Mechanisms of bilirubin toxicity: clinical implications. Clin Perinatol 29(4):765–778 viii CrossRefPubMedGoogle Scholar
  17. Hansen TWR (2002b) Mechanisms of bilirubin toxicity: clinical implications. Clin Perinatol 29(4):765–778CrossRefPubMedGoogle Scholar
  18. Harel NY, Strittmatter SM (2006) Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury? Nat Rev Neurosci 7(8):603–616CrossRefPubMedPubMedCentralGoogle Scholar
  19. Houle JD, Tom VJ et al (2006) Combining an autologous peripheral nervous system “bridge” and matrix modification by chondroitinase allows robust, functional regeneration beyond a hemisection lesion of the adult rat spinal cord. J Neurosci 26(28):7405–7415CrossRefPubMedGoogle Scholar
  20. Hu Z, Ulfendahl M (2006) Cell replacement therapy in the inner ear. Stem Cells Dev 15(3):449–459CrossRefPubMedGoogle Scholar
  21. Jensen A, Berger R (1991) Fetal circulatory responses to oxygen lack. J Dev Physiol 16(4):181–207PubMedGoogle Scholar
  22. Kalbermatten DF, Schaakxs D et al (2011) Neurotrophic activity of human adipose stem cells isolated from deep and superficial layers of abdominal fat. Cell Tissue Res 344(2):251–260CrossRefPubMedGoogle Scholar
  23. Kaplan M, Muraca M et al (2005) Neonatal bilirubin production-conjugation imbalance: effect of glucose-6-phosphate dehydrogenase deficiency and borderline prematurity. Arch Dis Child Fetal Neonatal Ed 90(2):F123–F127CrossRefPubMedPubMedCentralGoogle Scholar
  24. lidong Z, Xiaoquan W, Tao C, Weiwei G, Chang L, Shiming Y (2013) Hyperbilirubinemia and auditory neuropathy. J Otol, 1002Google Scholar
  25. Loo DT (2011) In situ detection of apoptosis by the TUNEL assay: an overview of techniques. In: DNA damage detection in situ, ex vivo, and in vivo, Springer, Berlin, p 3–13Google Scholar
  26. Marcdante K, Kliegman RM et al (2010) Nelson essentials of pediatrics. Elsevier Health Sciences, LondonGoogle Scholar
  27. Massey JM, Hubscher CH et al (2006) Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury. J Neurosci 26(16):4406–4414CrossRefPubMedGoogle Scholar
  28. Matsui JI, Parker MA et al (2005) Regeneration and replacement in the vertebrate inner ear. Drug Discovery Today 10(19):1307–1312CrossRefPubMedGoogle Scholar
  29. Matsuoka AJ, Kondo T et al (2007) Enhanced survival of bone–marrow-derived pluripotent stem cells in an animal model of auditory neuropathy. Laryngoscope 117(9):1629–1635CrossRefPubMedGoogle Scholar
  30. Meier C, Middelanis J et al (2006) Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediatr Res 59(2):244–249CrossRefPubMedGoogle Scholar
  31. Mejia GB, Sanz CR et al (2008) Experimental hemolysis model to study bilirubin encephalopathy in rat brain. J Neurosci Methods 168(1):35–41CrossRefPubMedGoogle Scholar
  32. Moriarty DG, Zack MM et al (2003) The Centers for Disease Control and Prevention’s Healthy Days Measures-Population tracking of perceived physical and mental health over time. Health Qual Life Outcomes 1(1):37CrossRefPubMedPubMedCentralGoogle Scholar
  33. Muramatsu K, Fukuda A et al (1997) Vulnerability to cerebral hypoxic-ischemic insult in neonatal but not in adult rats is in parallel with disruption of the blood-brain barrier. Stroke 28(11):2281–2289CrossRefPubMedGoogle Scholar
  34. Ortega FD, Azpeitia GG et al (1997) Apertura reversible de la barrera hematoencefálica inducida por hipercapnia en hiperbilirrubinemia experimental. An Esp Pediatr 46:374–377Google Scholar
  35. Ostrow JD, Pascolo L et al (2003) New concepts in bilirubin encephalopathy. Eur J Clin Invest 33(11):988–997CrossRefPubMedGoogle Scholar
  36. Park KI, LIU S et al (1999) Transplantation of neural progenitor and stem cells: developmental insights may suggest new therapies for spinal cord and other CNS dysfunction. J Neurotrauma 16(8):675–687CrossRefPubMedGoogle Scholar
  37. Rice JE, Vannucci RC et al (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9(2):131–141CrossRefPubMedGoogle Scholar
  38. Salomone F, Li Volti G, Rosso C, Grosso G, Bugianesi E (2013) Unconjugated bilirubin, a potent endogenous antioxidant, is decreased in patients with non-alcoholic steatohepatitis and advanced fibrosis. J Gastroenterol Hepatol 28:1202–1208. doi: 10.1111/jgh.12155 CrossRefPubMedGoogle Scholar
  39. Sarveazad A, Bakhtiari M et al (2014) Comparison of human adipose-derived stem cells and chondroitinase ABC transplantation on locomotor recovery in the contusion model of spinal cord injury in rats. Iran J Basic Med Sci 17(9):685PubMedPubMedCentralGoogle Scholar
  40. Shapiro SM (1991) Binaural effects in brainstem auditory evoked potentials of jaundiced Gunn rats. Hear Res 53(1):41–48CrossRefPubMedGoogle Scholar
  41. Shapiro SM (2003) Bilirubin toxicity in the developing nervous system. Pediatr Neurol 29(5):410–421CrossRefPubMedGoogle Scholar
  42. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5(2):146–156CrossRefPubMedGoogle Scholar
  43. Vannucci R, Connor J et al (1999) Rat model of perinatal hypoxic-ischemic brain damage. J Neurosci Res 55(2):158–163CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Naser Amini
    • 1
  • Nasim Vousooghi
    • 1
    • 2
  • Mahmoudreza Hadjighassem
    • 1
    • 3
  • Mehrdad Bakhtiyari
    • 4
  • Neda Mousavi
    • 5
  • Hosein Safakheil
    • 4
  • leila Jafari
    • 4
  • Arash Sarveazad
    • 6
  • Abazar Yari
    • 7
  • Sara Ramezani
    • 1
  • Faezeh Faghihi
    • 4
  • Mohammad Taghi Joghataei
    • 1
    • 4
    • 8
    Email author
  1. 1.Department of Neuroscience, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
  2. 2.Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk BehaviorsTehran University of Medical SciencesTehranIran
  3. 3.Brain and Spinal Cord Injury Research CenterTehran University of Medical SciencesTehranIran
  4. 4.Cellular and Molecular Research CenterIran University of Medical SciencesTehranIran
  5. 5.Department of Cellular and Molecular NutritionTehran University of Medical SciencesTehranIran
  6. 6.Colorectal Research CenterIran University of Medical SciencesTehranIran
  7. 7.Department of AnatomyAlborz University of Medical SciencesKarajIran
  8. 8.Neuroscience Department, Faculty of Advanced Technologies in MedicineIran University of Medical SciencesTehranIran

Personalised recommendations