Advertisement

Neurotoxicity Research

, Volume 28, Issue 3, pp 268–280 | Cite as

Physical Exercise Alleviates Health Defects, Symptoms, and Biomarkers in Schizophrenia Spectrum Disorder

  • Trevor Archer
  • Richard M. Kostrzewa
Review

Abstract

Schizophrenia spectrum disorders are characterized by symptom profiles consisting of positive and negative symptoms, cognitive impairment, and a plethora of genetic, epigenetic, and phenotypic biomarkers. Assorted animal models of these disorders and clinical neurodevelopmental indicators have implicated neurodegeneration as an element in the underlying pathophysiology. Physical exercise or activity regimes—whether aerobic, resistance, or endurance—ameliorate regional brain and functional deficits not only in affected individuals but also in animal models of the disorder. Cognitive deficits, often linked to regional deficits, were alleviated by exercise, as were quality-of-life, independent of disorder staging and risk level. Apoptotic processes intricate to the etiopathogenesis of schizophrenia were likewise attenuated by physical exercise. There is also evidence of manifest benefits endowed by physical exercise in preserving telomere length and integrity. Not least, exercise improves overall health and quality-of-life. The notion of scaffolding as the outcome of physical exercise implies the “buttressing” of regional network circuits, neurocognitive domains, anti-inflammatory defenses, maintenance of telomeric integrity, and neuro-reparative and regenerative processes.

Keywords

Schizophrenia Symptoms Biomarkers Physical exercise Health Regional deficits Apoptosis Telomeres Intervention 

References

  1. Al Awam K, Haußleiter IS, Dudley E, Donev R, Brüne M, Juckel G, Thome J (2014) Multiplatform metabolome and proteome profiling identifies serum metabolite and protein signatures as prospective biomarkers for schizophrenia. J Neural Transm. doi: 10.1007/s00702-014-1224-0
  2. Anthes E (2014) Ageing: live faster, die younger. Nature 508(7494):S16–S17. doi: 10.1038/508S16a PubMedCrossRefGoogle Scholar
  3. Archer T (2010a) Neurodegeneration in schizophrenia. Expert Rev Neurother 10(7):1131–1141. doi: 10.1586/ern.09.152 PubMedCrossRefGoogle Scholar
  4. Archer T (2010b) Physical exercise alleviates debilities of normal aging and Alzheimer’s disease. Acta Neurol Scand 123:221–238PubMedCrossRefGoogle Scholar
  5. Archer T (2012) Influence of physical exercise on traumatic brain injury deficits: scaffolding effect. Neurotox Res 21:418–424. doi: 10.1007/s12640-011-9297-0 PubMedCrossRefGoogle Scholar
  6. Archer T, Kostrzewa RM (2012) Physical exercise alleviates ADHD symptoms: regional deficits and developmental trajectory. Neurotox Res 21:195–209. doi: 10.1007/s12640-011-9260-0 PubMedCrossRefGoogle Scholar
  7. Archer T, Beninger RJ, Palomo T, Kostrzewa RM (2010a) Epigenetics and biomarkers in the staging of neuropsychiatric disorders. Neurotox Res 18(3–4):347–366. doi: 10.1007/s12640-010-9163-5 PubMedCrossRefGoogle Scholar
  8. Archer T, Kostrzewa RM, Palomo T, Beninger RJ (2010b) Clinical staging in the pathophysiology of psychotic and affective disorders: facilitation of prognosis and treatment. Neurotox Res 18(3–4):211–228. doi: 10.1007/s12640-010-9161-7 PubMedCrossRefGoogle Scholar
  9. Archer T, Fredriksson A, Schütz E, Kostrzewa RM (2011a) Influence of physical exercise on neuroimmunological functioning and health: aging and stress. Neurotox Res 20:69–83PubMedCrossRefGoogle Scholar
  10. Archer T, Johansson B, Fredriksson A (2011b) Exercise alleviates Parkinsonism: clinical and laboratory evidence. Acta Neurol Scand 123:73–84PubMedCrossRefGoogle Scholar
  11. Archer T, Svensson K, Alricsson M (2012) Physical exercise ameliorates deficits induced by traumatic brain injury. Acta Neurol Scand. doi: 10.1111/j.1600-0404.2011.01638.x PubMedGoogle Scholar
  12. Archer T, Karilampi U, Ricci S, Rapp-Ricciardi M (2013) Neurotoxic vulnerability underlying schizophrenia spectrum disorders. In: Kostrzewa RM (ed) Handbook of neurotoxicity. Springer, New York, pp 2181–2205Google Scholar
  13. Archer T, Josefsson T, Lindvall M (2014a) Effects of physical exercise on depressive symptoms and biomarkers in depression. CNS Neurol Disord Drug Targets 13:1640–1653PubMedCrossRefGoogle Scholar
  14. Archer T, Ricci S, Garcia D, Ricciardi MR (2014b) Neurodegenerative aspects in vulnerability to schizophrenia spectrum disorders. Neurotox Res 26(4):400–413. doi: 10.1007/s12640-014-9473-0 PubMedCrossRefGoogle Scholar
  15. Balu DT, Coyle JT (2014) The NMDA receptor ‘glycine modulatory site’ in schizophrenia: d-serine, glycine, and beyond. Curr Opin Pharmacol 20C:109–115. doi: 10.1016/j.coph.2014.12.004 Google Scholar
  16. Bassilios B, Judd F, Pattison P, Nicholas A, Moeller-Saxone K (2013) Predictors of exercise in individuals with schizophrenia. Clin Schizophr Relat Psychoses 7:1–28Google Scholar
  17. Battaglia G, Alesi M, Inguglia M, Roccella M, Caramazza G, Bellafiore M, Palma A (2013) Soccer practice as an add-on treatment in the management of individuals with a diagnosis of schizophrenia. Neuropsychiatr Dis Treat 9:595–603. doi: 10.2147/NDT.544066 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Beebe LH, Smith KD, Roman MW, Burk RC, McIntyre K, Dessieux OL, Tavakoli A, Tennison C (2013) A pilot study describing physical activity in persons with schizophrenia Spectrum Disorders (SSDS) after an exercise program. Issues Ment Health Nurs 34:214–219. doi: 10.3109/01612840.2012.746411 PubMedCrossRefGoogle Scholar
  19. Benedetti F, Poletti S, Radaelli D, Bernasconi A, Cavallaro R, Falini A, Lorenzi C, Pirovano A, Dallaspezia S, Locatelli C, Scotti G, Smeraldi E (2010) Temporal lobe grey matter volume in schizophrenia is associated with a genetic polymorphism influencing glycogen synthase kinase 3-β activity. Genes Brain Behav 9(4):365–371. doi: 10.1111/j.1601-183X.2010.00566.x PubMedCrossRefGoogle Scholar
  20. Benetos A, Okuda K, Lajemi M, Kimura M, Thomas F et al (2001) Telomere length as an indicator of biological aging: the gender effect and relation with pulse pressure and pulse wave velocity. Hypertension 37:381–385. doi: 10.1161/01.HYP.37.2.381 PubMedCrossRefGoogle Scholar
  21. Bernard PP, Esseul EC, Raymond L, Dandonneau L, Xambo JJ, Carayol MS, Ninot GJ (2013) Counseling and exercise intervention for smoking reduction in patients with schizophrenia: a feasibility study. Arch Psychiatr Nurs 27(1):23–31. doi: 10.1016/j.apnu.2012.07.001 PubMedCrossRefGoogle Scholar
  22. Bock J, Braun K (2011) The impact of perinatal stress on the functional maturation of prefronto-cortical synaptic circuits: implications for the pathophysiology of ADHD? Prog Brain Res 189:155–169. doi: 10.1016/B978-0-444-53884-0.00023-3 PubMedCrossRefGoogle Scholar
  23. Bock J, Rether K, Gröger N, Xie L, Braun K (2014) Perinatal programming of emotional brain circuits: an integrative view from systems to molecules. Front Neurosci 8:11. doi: 10.3389/fnins.2014.00011 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Bois C, Levita L, Ripp I, Owens DC, Johnstone EC, Whalley HC, Lawrie SM (2014) Longitudinal changes in hippocampal volume in the Edinburgh high risk study of schizophrenia. Schizophr Res. doi: 10.1016/j.schres.2014.12.003 PubMedGoogle Scholar
  25. Brisch R, Saniotis A, Wolf R, Bielau H, Bernstein HG, Steiner J, Bogerts B, Braun AK, Jankowski Z, Kumaritlake J, Henneberg M, Gos T (2014) The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. Front Psychiatry 5:47PubMedCentralPubMedGoogle Scholar
  26. Carlsson M, Carlsson A (1990) Schizophrenia: a subcortical neurotransmitter imbalance syndrome? Schizophr Bull 16:425–432PubMedCrossRefGoogle Scholar
  27. Castañé A, Santana N, Artigas F (2015) PCP-based mice models of schizophrenia: differential behavioral, neurochemical and cellular effects of acute and subchronic treatments. Psychopharmacology (Berl). doi: 10.1007/s00213-015-3946-6
  28. Catts VS, Wong J, Fillman SG, Fung SJ, Weickert CS (2014) Increased expression of astrocyte markers in schizophrenia: association with neuroinflammation. Aust N Z J Psychiatry 48:722–734PubMedCrossRefGoogle Scholar
  29. Chang CK, Hayes RD, Broadbent M, Fernandes AC, Lee W, Hotopf M, Stewart R (2010) All-cause mortality among people with serious mental illness (SMI), substance use disorders, and depressive disorders in southeast London: a cohort study. BMC Psychiatry 10:77. doi: 10.1186/1471-244X-10-77 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Chang CK, Hayes RD, Perera G, Broadbent MT, Fernandes AC, Lee WE, Hotopf M, Stewart R (2011) Life expectancy at birth for people with serious mental illness and other major disorders from a secondary mental health care case register in London. PLoS One 6(5):e19590. doi: 10.1371/journal.pone.0019590 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Chen J, Kostrzewa RM, Xu X (2014) Necroptosis, a potential therapeutic target for neurological disorders. In: Kostrzewa RM (ed) Handbook of neurotoxicity. Springer, New York, pp 69–93Google Scholar
  32. Cherkas LF, Aviv A, Valdes AM, Hunkin JL, Gardner JP, Surdulescu GL, Kimura M, Spector TD (2006) The effects of social status on biological aging as measured by white-blood-cell telomere length. Aging Cell 5(5):361–365PubMedCrossRefGoogle Scholar
  33. Cherkas LF, Hunkin JL, Kato BS, Richards JB, Gardner JP, Surdulescu GL, Kimura M, Lu X, Spector TD, Aviv A (2008) The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med 168(2):154–158. doi: 10.1001/archinternmed.2007.39 PubMedCrossRefGoogle Scholar
  34. Chung JW, Jin HS, Baek SB, Kim CJ, Kim TW (2014) Treadmill exercise inhibits hippocampal apoptosis through enhancing N-methyl-D-aspartate receptor expression in the MK-801-induced schizophrenic mice. J Exerc Rehab. doi: 10.12965/jer.140144 Google Scholar
  35. Cieslak K, Feingold J, Antonius D, Walsh-Messinger J, Dracxler R, Rosedale M, Aujero N, Keefe D, Goetz D, Goetz R, Malaspina D (2014) Low vitamin D levels predict clinical features of schizophrenia. Schizophr Res 159(2–3):543–545. doi: 10.1016/j.schres.2014.08.031 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cloke JM, Winters BD (2015) α4β2 nicotinic receptor stimulation of the GABAergic system within the orbitofrontal cortex ameliorates the severe crossmodal object recognition impairment in ketamine-treated rats: implications for cognitive dysfunction in schizophrenia. Neuropharmacology 90:42–52. doi: 10.1016/j.neuropharm.2014.11.004 PubMedCrossRefGoogle Scholar
  37. Coplan JD, Fathy HM, Abdallah CG, Ragab SA, Kral JG, Mao X, Shungu DC, Mathew SJ (2014) Reduced hippocampal N-acetyl-aspartate (NAA) as a biomarker for overweight. Neuroimage Clin 4:326–335. doi: 10.1016/j.nicl.2013.12.014 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Costa MA, Fonseca BM, Teixeira NA, Correia-da-Silva G (2015) The endocannabinoid anandamide induces apoptosis in cytotrophoblast cells: involvement of both mitochondrial and death receptor pathways. Placenta 36(1):69–76. doi: 10.1016/j.placenta.2014.10.011 PubMedCrossRefGoogle Scholar
  39. Coyle JT (2006) Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 26:365–384PubMedCrossRefGoogle Scholar
  40. d’Amato T, Bation R, Cochet A, Jalenques I, Galland F, Giraud-Baro E, Pacaud-Troncin M, Augier-Astolfi F, Llorca PM, Saoud M, Brunelin J (2011) A randomized, controlled trial of computer-assisted cognitive remediation for schizophrenia. Schizophr Res 125(2–3):284–290. doi: 10.1016/j.schres.2010.10.023 PubMedCrossRefGoogle Scholar
  41. Daumit GL, Dickerson FB, Wang NY, Dalcin A, Jerome GJ, Anderson CA, Young DR, Frick KD, Yu A, Gennusa JV 3rd, Oefinger M, Crum RM, Charleston J, Casagrande SS, Guallar E, Goldberg RW, Campbell LM, Appel LJ (2013) A behavioral weight-loss intervention in persons with serious mental illness. N Engl J Med 368(17):1594–1602. doi: 10.1056/NEJMoa1214530 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Davis J, Moylan S, Harvey BH, Maes M, Berk M (2014) Neuroprogression in schizophrenia: pathways underpinning clinical staging and therapeutic corollaries. Aust N Z J Psychiatry 48(6):512–529PubMedCrossRefGoogle Scholar
  43. Dean B, Boer S, Gibbons A, Money T, Scarr E (2009) Recent advances in postmortem pathology and neurochemistry in schizophrenia. Curr Opin Psychiatry 22(2):154–160. doi: 10.1097/YCO.0b013e328323d52e PubMedCrossRefGoogle Scholar
  44. Debnath M, Venkatasubramanian G, Berk M (2014) Fetal programming of schizophrenia: select mechanisms. Neurosci Biobehav Rev 49C:90–104. doi: 10.1016/j.neubiorev.2014.12.003 Google Scholar
  45. Denham J, Nelson CP, O’Brien BJ, Nankervis SA, Denniff M, Harvey JT, Marques FZ, Codd V, Zukowska-Szczechowska E, Samani NJ, Tomaszewski M, Charchar FJ (2013) Longer leukocyte telomeres are associated with ultra-endurance exercise independent of cardiovascular risk factors. PLoS One 8(7):e69377. doi: 10.1371/journal.pone.0069377 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Dietrich MO, Mantese CE, Porciuncula LO, Ghisleni G, Vinade L, Souza DO, Portela LV (2005) Exercise affects glutamate receptors in postsynaptic densities from cortical mice brain. Brain Res 1065:20–25PubMedCrossRefGoogle Scholar
  47. Elsworth JD, Groman SM, Jentsch JD, Leranth C, Redmon DE Jr, Kim JD, Diano S, Roth RH (2014) Primate phencyclidine model of schizophrenia: sex-specific effects on cognition, BDNF, spine synapses and dopamine turnover in prefrontal cortex. Int J Neuropsychopharmacol 18:pyu048PubMedCrossRefGoogle Scholar
  48. Emmett MR, Kroes RA, Moskal JR, Conrad CA, Priebe W, Laezza F, Meyer-Baese A, Nilsson CL (2014) Integrative biological analysis for neuropsychopharmacology. Neuropsychopharmacology 39(1):5–23. doi: 10.1038/npp.2013.156 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Faizi M, Salimi A, Rasoulzadeh M, Naserzadeh P, Pourahmad J (2014) Schizophrenia induces oxidative stress and cytochrome C release in isolated rat brain mitochondria: a possible pathway for induction of apoptosis and neurodegeneration. Iran J Pharm Res. 13(Suppl):93–100PubMedCentralPubMedGoogle Scholar
  50. Falkai P, Malchow B, Wobrock T, Gruber O, Schmitt A, Honer WG, Pajonk FG, Sun F, Cannon TD (2013) The effect of aerobic exercise on cortical architecture in patients with chronic schizophrenia: a randomized controlled MRI study. Eur Arch Psychiatry Clin Neurosci 263(6):469–473. doi: 10.1007/s00406-012-0383-y PubMedCrossRefGoogle Scholar
  51. Ferrara N, Rinaldi B, Corbi G, Conyi G, Stiuso P, Boccuti S, Rengo G, Rossi F, Filippelli A (2008) Exercise training promotes SIRT1 activity in aged rats. Rejuvenation Res 11:139–150. doi: 10.1089/rej.2007.0576 PubMedCrossRefGoogle Scholar
  52. Firth J, Cotter J, Elliott R, French P, Yung AR (2015) A systematic review and meta-analysis of exercise interventions in schizophrenia patients. Psychol Med 4:1–19Google Scholar
  53. Fricker M, Vilalta A, Tolkovsky AM, Brown GC (2013) Caspase inhibitors protect neurons by enabling selective necroptosis of inflamed microglia. J Biol Chem 288(13):9145–9152. doi: 10.1074/jbc.M112.427880 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Friedrich U, Griese EU, Schwab M, Fritz P, Thon KP et al (2000) Telomere length in different tissues of elderly patients. Mech Ageing Dev 119:89–99. doi: 10.1016/S0047-6374(00)00173-1 PubMedCrossRefGoogle Scholar
  55. Fujimoto C, Yamasoba T (2014) Oxidative stresses and mitochondrial dysfunction in age-related hearing loss. Oxid Med Cell Longev 2014:582849. doi: 10.1155/2014/582849 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Fumagalli F, Molteni R, Roceri M, Bedogni F, Santero R, Fossati C, Gennarelli M, Racagni G, Riva MA (2003) Effect of antipsychotic drugs on brain-derived neurotrophic factor expression under reduced N-methyl-D-aspartate receptor activity. J Neurosci Res 72:622–628PubMedCrossRefGoogle Scholar
  57. Fusar-Poli P, Yung AR, McGorry P, van Os J (2014) Lessons learned from the psychosis high-risk state: towards a general staging model of prodromal intervention. Psychol Med 44(1):17–24. doi: 10.1017/S0033291713000184 PubMedCrossRefGoogle Scholar
  58. Ganzola R, Maziade M, Duchesne S (2014) Hippocampus and amygdala volumes in children and young adults at high-risk of schizophrenia: research synthesis. Schizophr Res 156(1):76–86. doi: 10.1016/j.schres.2014.03.030 PubMedCrossRefGoogle Scholar
  59. Garcia D, Archer T (2014) Positive affect and age as predictors of exercise compliance. PeerJ 2:e694. doi: 10.7717/peerj.694 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Gardner JP, Li S, Srinivasan SR, Chen W, Kimura M et al (2005) Rise in insulin resistance is associated with escalated telomere attrition. Circulation 111:2171–2177. doi: 10.1161/01.CIR.0000163550.70487 PubMedCrossRefGoogle Scholar
  61. Gargiulo PA, Landa De Gargiulo AI (2014) Glutamate and modeling of schizophrenia symptoms: review of our findings: 1990-2014. Pharmacol Rep 66(3):343–352. doi: 10.1016/j.pharep.2014.03.010 PubMedCrossRefGoogle Scholar
  62. Garlinghouse MA, Roth RM, Isquith PK, Flashman LA, Saykin AJ (2010) Subjective rating of working memory is associated with frontal lobe volume in schizophrenia. Schizophr Res 120(1–3):71–75. doi: 10.1016/j.schres.2010.02.1067 PubMedCentralPubMedCrossRefGoogle Scholar
  63. Gassó P, Mas S, Molina O, Lafuente A, Bernardo M, Parellada E (2014) Increased susceptibility to apoptosis in cultured fibroblasts from antipsychotic-naïve first-episode schizophrenic patients. J Psychiatr Res 48(1):94–101. doi: 10.1016/j.jpsychires.2013.09.017 PubMedCrossRefGoogle Scholar
  64. Godoy JA, Zolezzi JM, Braidy N, Inestrosa NC (2014) Role of Sirt1 during the ageing process: relevance to protection of synapses in the brain. Mol Neurobiol 50(3):744–756. doi: 10.1007/s12035-014-8645-5 PubMedCrossRefGoogle Scholar
  65. Gómez J, Jesús Marín-Méndez J, Molero P, Atakan Z, Ortuño F (2014) Time perception networks and cognition in schizophrenia: a review and a proposal. Psychiatry Res 220(3):737–744. doi: 10.1016/j.psychres.2014.07.048 PubMedCrossRefGoogle Scholar
  66. Guan JZ, Guan WP, Maeda T, Guoqing X, GuangZhi W, Makino N (2014) Patients with multiple sclerosis show increased oxidative stress markers and somatic telomere length shortening. Mol Cell Biochem 400:183–187PubMedCrossRefGoogle Scholar
  67. Hannan AJ (2014) Environmental enrichment and brain repair: harnessing the therapeutic effects of cognitive stimulation and physical activity to enhance experience-dependent plasticity. Neuropathol Appl Neurobiol 40(1):13–25. doi: 10.1111/nan.12102 PubMedCrossRefGoogle Scholar
  68. Hanssen M, van der Werf M, Verkaaik M, Arts B, Myin-Germeys I, van Os J, Verhey F, Köhler S, Risk Genetic, Outcome in Psychosis study group (2014) Comparative study of clinical and neuropsychological characteristics between early-, late and very-late-onset schizophrenia-spectrum disorders. Am J Geriatr Psychiatry. doi: 10.1016/j.jagp.2014.10.007 PubMedGoogle Scholar
  69. Harvey PD (2014) What is the evidence for changes in cognition and functioning over the lifespan in patients with schizophrenia? J Clin Psychiatry 75(Suppl 2):34–38. doi: 10.4088/JCP.13065su1.08 PubMedCrossRefGoogle Scholar
  70. Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N, Nakazato M, Kumakiri C, Okada S, Hasegawa H, Imai K, Iyo M (2003) Decreased serum levels of d-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry 60(6):572–576PubMedCrossRefGoogle Scholar
  71. Hayes RD, Chang CK, Fernandes AC, Begum A, To D, Broadbent M, Hotopf M, Stewart R (2012) Functional status and all-cause mortality in serious mental illness. PLoS One 7(9):e44613. doi: 10.1371/journal.pone.0044613 PubMedCentralPubMedCrossRefGoogle Scholar
  72. Heggelund J, Kleppe KD, Morken G, Vedul-Kjelsås E (2014) High aerobic intensity training and psychological states in patients with depression or schizophrenia. Front Psychiatry 5:148. doi: 10.3389/fpsyt.2014.00148 PubMedCentralPubMedCrossRefGoogle Scholar
  73. Hori H, Yoshimura R, Katsuki A, Atake K, Nakamura J (2014) Relationships between brain-derived neurotrophic factor, clinical symptoms, and decision-making in chronic schizophrenia: data from the Iowa Gambling Task. Front Behav Neurosci 8:417. doi: 10.3389/fnbeh.2014.00417 PubMedCentralPubMedCrossRefGoogle Scholar
  74. Hou Y, Zhang H, Xie G, Cao X, Zhao Y, Liu Y, Mao Z, Yang J, Wu C (2013) Neuronal injury, but not microglia activation, is associated with ketamine-induced experimental schizophrenic model in mice. Prog Neuropsychopharmacol Biol Psychiatry 45:107–116. doi: 10.1016/j.pnpbp.2013.04.006 PubMedCrossRefGoogle Scholar
  75. Hwang L, Choi IY, Kim SE, Ko IG, Shin MS, Kim CJ, Kim SH, Jin JJ, Chung JY, Yi JW (2013) Dexmedetomidine ameliorates intracerebral hemorrhage-induced memory impairment by inhibiting apoptosis and enhancing brain-derived neurotrophic factor expression in rat hippocampus. Int J Mol Med 31:1047–1056PubMedGoogle Scholar
  76. Jouan-Lanhouet S, Riquet F, Duprez L, Vanden Berghe T, Takahashi N, Vandenabeele P (2014) Necroptosis, in vivo detection in experimental disease models. Semin Cell Dev Biol. doi: 10.1016/j.semcdb.2014.08.010 PubMedGoogle Scholar
  77. Kaltsatou A, Kouidi E, Fountoulakis K, Sipka C, Theochari V, Kandylis D, Deligiannis A (2014) Effects of exercise training with traditional dancing on functional capacity and quality of life in patients with schizophrenia: a randomized controlled study. Clin Rehabil. doi: 10.1177/0269215514564085
  78. Kao HT, Cawthon RM, Delisi LE, Bertisch HC, Ji F, Gordon D, Li P, Benedict MM, Greenberg WM, Porton B (2008) Rapid telomere erosion in schizophrenia. Mol Psychiatry 13(2):118–119. doi: 10.1038/sj.mp.4002105 PubMedCrossRefGoogle Scholar
  79. Kerling A, Tegtbur U, Ziegenbein M, Grams L, Heinze DR, Sieberer M (2013) Exercise capacity and quality of life in patients with schizophrenia. Psychiatr Q 84(4):417–427. doi: 10.1007/s11126-013-9256-4 PubMedCrossRefGoogle Scholar
  80. Kim BK, Kim IG, Kim SE, Kim CJ, Yoon JS, Baik HH, Jin BK, Lee CY, Baek SB, Shin MS (2013) Impact of several types of stresses on short-term memory and apoptosis in the hippocampus of rats. Int Neuroural J 17:114–120CrossRefGoogle Scholar
  81. Kim HJ, Song BK, So B, Lee O, Song W, Kim Y (2014a) Increase of circulating BDNF levels and its relation to improvement of physical fitness following 12 weeks of combined exercise in chronic patients with schizophrenia: a pilot study. Psychiatry Res 220(3):792–796. doi: 10.1016/j.psychres.2014.09.020 PubMedCrossRefGoogle Scholar
  82. Kim TW, Kang HS, Park JK, Lee SJ, Baek SB, Kim CJ (2014b) Voluntary wheel running ameliorates symptoms of MK-801-induced schizophrenia in mice. Mol Med Rep 10(6):2924–2930. doi: 10.3892/mmr.2014.2644 PubMedGoogle Scholar
  83. Kimhy D, Vakhrusheva J, Bartels MN, Armstrong HF, Ballon JS, Khan S, Chang RW, Hansen MC, Ayanruoh L, Lister A, Castrén E, Smith EE, Sloan RP (2015) The impact of aerobic exercise on brain-derived neurotrophic factor and neurocognition in individuals with schizophrenia: a single-blind, randomized clinical trial. Schizophr Bull 41:859–868PubMedCrossRefGoogle Scholar
  84. Knable MB, Barci BM, Webster MJ, Meador-Woodruff J, Torrey EF (2004) Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium. Mol Psychiatry 9:609–620PubMedCrossRefGoogle Scholar
  85. Knapen J, Vancampfort D, Moriën Y, Marchal Y (2014) Exercise therapy improves both mental and physical health in patients with major depression. Disabil Rehabil 24:1–6Google Scholar
  86. Koeva YA, Sivkov ST, Akabaliev VH, Ivanova RY, Deneva TI, Grozlekova LS, Georgieva V (2014) Brain-derived neurotrophic factor and its serum levels in schizophrenic patients. Folia Med (Plovdiv) 56(1):20–23Google Scholar
  87. Kooijman E, Nijboer CH, van Velthoven CT, Kavelaars A, Kesecioglu J, Heijnen CJ (2014) The rodent endovascular puncture model of subarachnoid hemorrhage: mechanisms of brain damage and therapeutic strategies. J Neuroinflammation. doi: 10.1186/1742-2094-11-2 PubMedCentralPubMedGoogle Scholar
  88. Korosi A, Naninck EF, Oomen CA, Schouten M, Krugers H, Fitzsimons C, Lucassen PJ (2012) Early-life stress mediated modulation of adult neurogenesis and behavior. Behav Brain Res 227(2):400–409. doi: 10.1016/j.bbr.2011.07.037 PubMedCrossRefGoogle Scholar
  89. Kota LN, Purushottam M, Moily NS, Jain S (2014) Shortened telomere in unremitted schizophrenia. Psychiatry Clin Neurosci. doi: 10.1111/pcn.12260 Google Scholar
  90. Krauss J, Farzaneh-Far R, Puterman E, Na B, Lin J, Epel E, Blackburn E, Whooley MA (2011) Physical fitness and telomere length in patients with coronary heart disease: findings from the Heart and Soul Study. PLoS One 6(11):e26983. doi: 10.1371/journal.pone.0026983 PubMedCentralPubMedCrossRefGoogle Scholar
  91. Kupenberg G, Heckers S (2000) Schizophrenia and cognitive function. Curr Opin Neurobiol 10:205–210CrossRefGoogle Scholar
  92. Lai CH, Ho TJ, Kuo WW, Day CH, Pai PY, Chung LC, Liao PH, Lin FH, Wu ET, Huang CY (2014) Exercise training enhanced SIRT1 longevity signaling replaces the IGF1 survival pathway to attenuate aging-induced rat heart apoptosis. Age 36(5):9706. doi: 10.1007/s11357-014-9706-4 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Lasevoli F, Buonaguro EF, Sarappa C, Marmo F, Latte G, Rossi R, Eramo A, Tomasetti C, de Bartolomeis A (2014) Regulation of postsynaptic plasticity genes’ expression and topography by sustained dopamine perturbation and modulation by acute memantine: relevance to schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 54:299–314. doi: 10.1016/j.pnpbp.2014.07.003 CrossRefGoogle Scholar
  94. Leutwyler H, Hubbard EM, Jeste DV, Vinogradov S (2012) “We’re not just sitting on the periphery”: a staff perspective of physical activity in older adults with schizophrenia. Gerontologist 53:474–483PubMedCentralPubMedCrossRefGoogle Scholar
  95. Lewis DA, Lieberman JA (2000) Catching up on schizophrenia: natural history and neurobiology. Neuron 28(2):325–334PubMedCrossRefGoogle Scholar
  96. Li YK, Hui CL, Lee EH, Chang WC, Chan SK, Leung CM, Chen EY (2014) Coupling physical exercise with dietary glucose supplement for treating cognitive impairment in schizophrenia: a theoretical model and future directions. Early Interv Psychiatry 8(3):209–220. doi: 10.1111/eip.12109 PubMedCrossRefGoogle Scholar
  97. Light GA, Swerdlow NR (2014) Neurophysiological biomarkers informing the clinical neuroscience of schizophrenia: mismatch negativity and prepulse inhibition of startle. Curr Top Behav Neurosci 21:293–314PubMedCrossRefGoogle Scholar
  98. Lin CH, Lin CC, Ting WJ, Pai PY, Kuo CH, Ho TJ, Kuo WW, Chang CH, Huang CY, Lin WT (2014) Resveratrol enhanced FOXO3 phosphorylation via synergetic activation of SIRT1 and PI3K/Akt signaling to improve the effects of exercise in elderly rat hearts. Age 36(5):9705. doi: 10.1007/s11357-014-9705-5 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Ludlow AT, Witkowski S, Marshall MR, Wang J, Lima LC, Guth LM, Spangenburg EE, Roth SM (2012) Chronic exercise modifies age-related telomere dynamics in a tissue-specific fashion. J Gerontol A 67(9):911–926. doi: 10.1093/gerona/gls002 CrossRefGoogle Scholar
  100. Malaspina D, Dracxler R, Walsh-Messinger J, Harlap S, Goetz RR, Keefe D, Perrin MC (2014) Telomere length, family history, and paternal age in schizophrenia. Mol Genet Genomic Med 2(4):326–331. doi: 10.1002/mgg3.71 PubMedCentralPubMedCrossRefGoogle Scholar
  101. Malchow B, Reich-Erkelenz D, Oertel-Knöchel V, Keller K, Hasan A, Schmitt A, Scheewe TW, Cahn W, Kahn RS, Falkai P (2013) The effects of physical exercise in schizophrenia and affective disorders. Eur Arch Psychiatry Clin Neurosci 263(6):451–467. doi: 10.1007/s00406-013-0423-2 PubMedCrossRefGoogle Scholar
  102. Malchow B, Keeser D, Keller K, Hasan A, Rauchmann BS, Kimura H, Schneider-Axmann T, Dechent P, Gruber O, Ertl-Wagner B, Honer WG, Hillmer-Vogel U, Schmitt A, Wobrock T, Niklas A, Falkai P (2015) Effects of endurance training on brain structures in chronic schizophrenia patients and healthy controls. Schizophr Res. doi: 10.1016/j.schres.2015.01.005 PubMedGoogle Scholar
  103. Mittal VA, Gupta T, Orr JM, Pelletier-Baldelli A, Dean DJ, Lunsford-Avery JR, Smith AK, Robustelli BL, Leopold DR, Millman ZB (2014) Physical activity level and medial temporal health in youth at ultra high-risk for psychosis. J Abnorm Psychol 122(4):1101–1110. doi: 10.1037/a0034085 CrossRefGoogle Scholar
  104. Molina LA, Skelin I, Gruber AJ (2014) Acute NMDA receptor antagonism disrupts synchronization of action potential firing in rat prefrontal cortex. PLoS ONE 9(1):e85842. doi: 10.1371/journal.pone.0085842 PubMedCentralPubMedCrossRefGoogle Scholar
  105. Na KS, Jung HY, Kim YK (2014) The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 48:277–286. doi: 10.1016/j.pnpbp.2012.10.022 PubMedCrossRefGoogle Scholar
  106. Nagy A, Eder K, Selak MA, Kalman B (2015) Mitochondrial energy metabolism and apoptosis regulation in glioblastoma. Brain Res 1595C:127–142. doi: 10.1016/j.brainres.2014.10.062 CrossRefGoogle Scholar
  107. Nettle D, Monaghan P, Gillespie R, Brilot B, Bedford T, Bateson M (2015) An experimental demonstration that early-life competitive disadvantage accelerates telomere loss. Proc Biol Sci 282(1798):20141610. doi: 10.1098/rspb.2014.1610 PubMedCentralPubMedCrossRefGoogle Scholar
  108. Nieratschker V, Lahtinen J, Meier S, Strohmaier J, Frank J, Heinrich A, Breuer R, Witt SH, Nöthen MM, Rietschel M, Hovatta I (2013) Longer telomere length in patients with schizophrenia. Schizophr Res 149(1–3):116–120. doi: 10.1016/j.schres.2013.06.043 PubMedCrossRefGoogle Scholar
  109. Ornish D, Lin J, Chan JM, Epel E, Kemp C, Weidner G, Marlin R, Frenda SJ, Magbanua MJ, Daubenmier J, Estay I, Hills NK, Chainani-Wu N, Carroll PR, Blackburn EH (2013) Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol 14(11):1112–1120. doi: 10.1016/S1470-2045(13)70366-8 PubMedCrossRefGoogle Scholar
  110. Ortiz-Gil J, Pomarol-Clotet E, Salvador R, Canales-Rodríguez EJ, Sarró S, Gomar JJ, Guerrero A, Sans-Sansa B, Capdevila A, Junqué C, McKenna PJ (2011) Neural correlates of cognitive impairment in schizophrenia. Br J Psychiatry 199(3):202–210. doi: 10.1192/bjp.bp.110.083600 PubMedCrossRefGoogle Scholar
  111. Pajonk FG, Wobrock T, Gruber O, Scherk H, Berner D, Kaizl I, Kierer A, Müller S, Oest M, Meyer T, Backens M, Schneider-Axmann T, Thornton AE, Honer WG, Falkai P (2010) Hippocampal plasticity in response to exercise in schizophrenia. Arch Gen Psychiatry 67(2):133–143. doi: 10.1001/archgenpsychiatry.2009.193 PubMedCrossRefGoogle Scholar
  112. Papanastasiou E (2012) Interventions for the metabolic syndrome in schizophrenia: a review. Ther Adv Endocrinol Metab 3(5):141–162. doi: 10.1177/2042018812458697 PubMedCentralPubMedCrossRefGoogle Scholar
  113. Park JK, Lee SJ, Kim TW (2014) Treadmill exercise enhances NMDA receptor expression in schizophrenia mice. J Exerc Rehabil 10(1):15–21. doi: 10.12965/jer.140088 PubMedCentralPubMedCrossRefGoogle Scholar
  114. Pasternak O, Westin CF, Bouix S, Seidman LJ, Goldstein JM, Woo TU, Petryshen TL, Mesholam-Gately RI, McCarley RW, Kikinis R, Shenton ME, Kubicki M (2012) Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset. J Neurosci 32(48):17365–17372. doi: 10.1523/JNEUROSCI.2904-12.2012 PubMedCentralPubMedCrossRefGoogle Scholar
  115. Peters BD, Karlsgodt KH (2014) White matter development in the early stages of psychosis. Schizophr Res. doi: 10.1016/j.schres.2014.05.021 Google Scholar
  116. Pietersen CY, Mauney SA, Kim SS, Passeri E, Lim MP, Rooney RJ, Goldstein JM, Petreyshen TL, Seidman LJ, Shenton ME, Mccarley RW, Sonntag KC, Woo TU (2014) Molecular profiles of parvalbumin-immunoreactive neurons in the superior temporal cortex in schizophrenia. J Neurogenet 28(1–2):70–85. doi: 10.3109/01677063.2013.878339 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Pomarol-Clotet E, Canales-Rodríguez EJ, Salvador R, Sarró S, Gomar JJ, Vila F, Ortiz-Gil J, Iturria-Medina Y, Capdevila A, McKenna PJ (2010) Medial prefrontal cortex pathology in schizophrenia as revealed by convergent findings from multimodal imaging. Mol Psychiatry 15(8):823–830. doi: 10.1038/mp.2009.146 PubMedCentralPubMedCrossRefGoogle Scholar
  118. Porton B, Delisi LE, Bertisch HC, Ji F, Gordon D, Li P, Benedict MM, Greenberg WM, Kao HT (2010) Telomerase levels in schizophrenia: a preliminary study. Schizophr Res 106(2–3):242–247. doi: 10.1016/j.schres.2008.08.028 Google Scholar
  119. Prata D, Mechelli A, Kapur S (2014) Clinically meaningful biomarkers for psychosis: a systematic and quantitative review. Neurosci Biobehav Rev 45:134–141. doi: 10.1016/j.neubiorev.2014.05.010 PubMedCrossRefGoogle Scholar
  120. Price LH, Kao HT, Burgers DE, Carpenter LL, Tyrka AR (2013) Telomeres and early-life stress: an overview. Biol Psychiatry 73(1):15–23. doi: 10.1016/j.biopsych.2012.06.025 PubMedCentralPubMedCrossRefGoogle Scholar
  121. Pujol N, Penadés R, Junqué C, Dinov I, Fu CH, Catalán R, Ibarretxe-Bilbao N, Bargalló N, Bernardo M, Toga A, Howard RJ, Costafreda SG (2014) Hippocampal abnormalities and age in chronic schizophrenia: morphometric study across the adult lifespan. Br J Psychiatry 205(5):369–375. doi: 10.1192/bjp.bp.113.140384 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Puterman E, Lin J, Krauss J, Blackburn EH, Epel ES (2014) Determinants of telomere attrition over 1 year in healthy older women: stress and health behaviors matter. Mol Psychiatry. doi: 10.1038/mp.2014.70 PubMedPubMedCentralGoogle Scholar
  123. Rao J, Chiappelli J, Kochunov P, Regenold WT, Rapoport SI, Hong LE (2014) Is schizophrenia a neurodegenerative disease? Evidence from age-related decline of brain-derived neurotrophic factor in the brains of schizophrenia patients and matched nonpsychiatric controls. Neurodegener Dis 15:38–44PubMedPubMedCentralCrossRefGoogle Scholar
  124. Ratliff JC, Palmese LB, Reutenauer EL, Liskov E, Grilo CM, Tek C (2012) The effect of dietary and physical activity pattern on metabolic profile in individuals with schizophrenia: a cross-sectional study. Compr Psychiatry 53(7):1028–1033. doi: 10.1016/j.comppsych.2012.02.003 PubMedCentralPubMedCrossRefGoogle Scholar
  125. Revilla S, Suñol C, García-Mesa Y, Giménez-Llort L, Sanfeliu C, Cristòfol R (2014) Physical exercise improves synaptic dysfunction and recovers the loss of survival factors in 3xTg-AD mouse brain. Neuropharmacology 81:55–63. doi: 10.1016/j.neuropharm.2014.01.037 PubMedCrossRefGoogle Scholar
  126. Ribeiro-Santos A, Lucio Teixeira A, Salgado JV (2014) Evidence for an immune role on cognition in schizophrenia: a systematic review. Curr Neuropharmacol 12(3):273–280. doi: 10.2174/1570159X1203140511160832 PubMedCentralPubMedCrossRefGoogle Scholar
  127. Richter T, von Zglinicki T (2007) A continuous correlation between oxidative stress and telomere shortening in fibroblasts. Exp Gerontol 42(11):1039–1042PubMedCrossRefGoogle Scholar
  128. Ringen PA, Engh JA, Birkenaes AB, Dieset I (2014) Andreassen OA (2014) Increased mortality in schizophrenia due to cardiovascular disease—a non-systematic review of epidemiology, possible causes, and interventions. Front Psychiatry 5:137. doi: 10.3389/fpsyt.2014.00137 PubMedCentralPubMedCrossRefGoogle Scholar
  129. Rosenbaum S, Tiedemann A, Sherrington C, Curtis J, Ward PB (2014) Physical activity interventions for people with mental illness: a systematic review and meta-analysis. J Clin Psychiatr 75(9):964–974. doi: 10.4088/JCP.13r08765 CrossRefGoogle Scholar
  130. Rosenfeld M, Brenner-Lavie H, Ari SG, Kavushansky A, Ben-Shachar D (2011) Perturbation in mitochondrial network dynamics and in complex I dependent cellular respiration in schizophrenia. Biol Psychiatry 69(10):980–988. doi: 10.1016/j.biopsych.2011.01.010 PubMedCrossRefGoogle Scholar
  131. Ruiz-Iriondo M, Salaberria K, Echeburúa E (2013) Schizophrenia: analysis and psychological treatment according to the clinical staging. Actas Esp Psiquiatr 41(1):52–59PubMedGoogle Scholar
  132. Salavati B, Rajji TK, Price R, Sun Y, Graff-Guerrero A, Daskalakis ZJ (2015) Imaging-based neurochemistry in schizophrenia: a systematic review and implications for dysfunctional long-term potentiation. Schizophr Bull 41(1):44–56. doi: 10.1093/schbul/sbu132 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Sampson MJ, Winterbone MS, Hughes JC, Dozio N, Hughes DA (2006) Monocyte telomere shortening and oxidative DNA damage in type 2 diabetes. Diabetes Care 29:283–289. doi: 10.2337/diacare.29.02.06.dc05-1715 PubMedCrossRefGoogle Scholar
  134. Scheewe TW, Takken T, Kahn RS, Cahn W, Backx FJ (2012) Effects of exercise therapy on cardiorespiratory fitness in patients with schizophrenia. Med Sci Sports Exerc 44(10):1834–1842. doi: 10.1249/MSS.0b013e318258e120 PubMedCrossRefGoogle Scholar
  135. Scheewe TW, Backx FJ, Takken T, Jörg F, van Strater AC, Kroes AG, Kahn RS, Cahn W (2013) Exercise therapy improves mental and physical health in schizophrenia: a randomized controlled trial. Acta Psychiatr Scand 127:464–473. doi: 10.1111/acps.12029 PubMedCrossRefGoogle Scholar
  136. Schwartzman RA, Cidlowski JA (1993) Apoptosis: the biochemical and molecular biology of programmed cell death. Endocr Rev 14:133–151PubMedGoogle Scholar
  137. Schwarz E, Guest PC, Rahmoune H, Harris LW, Wang L, Leweke FM, Rothermundt M, Bogerts B, Koethe D, Kranaster L, Ohrmann P, Suslow T, McAllister G, Spain M, Barnes A, van Beveren NJ, Baron-Cohen S, Steiner J, Torrey FE, Yolken RH, Bahn S (2012) Identification of a biological signature for schizophrenia in serum. Mol Psychiatry. 17(5):494–502. doi: 10.1038/mp.2011.42 PubMedCrossRefGoogle Scholar
  138. Shakeel MK, Docherty NM (2015) Confabulations in schizophrenia. Cogn. Neuropsychiatry. 20(1):1–13. doi: 10.1080/13546805.2014.940886 Google Scholar
  139. Shan JC, Liu CM, Chiu MJ, Liu CC, Chien YL, Hwang TJ, Lin YT, Hsieh MH, Jaw FS, Hwu HG (2013) A diagnostic model incorporating P50 sensory gating and neuropsychological tests for schizophrenia. PLoS One 8(2):e57197. doi: 10.1371/journal.pone.0057197 PubMedCentralPubMedCrossRefGoogle Scholar
  140. Shim M, Kim DW, Lee SH, Im CH (2014) Disruptions in small-world cortical functional connectivity network during an auditory oddball paradigm task in patients with schizophrenia. Schizophr Res 156(2–3):197–203. doi: 10.1016/j.schres.2014.04.012 PubMedCrossRefGoogle Scholar
  141. Shivakumar V, Kalmady SV, Venkatasubramanian G, Ravi V, Gangadhar BN (2014) Do schizophrenia patients age early? Asian J Psychiatr 10:3–9. doi: 10.1016/j.ajp.2014.02.007 PubMedCrossRefGoogle Scholar
  142. Smieskova R, Marmy J, Schmidt A, Bendfeldt K, Riecher-Rössler A, Walter M, Lang UE, Borgwardt S (2013) Do subjects at clinical high risk for psychosis differ from those with a genetic high risk?–A systematic review of structural and functional brain abnormalities. Curr Med Chem 20(3):467–481PubMedCentralPubMedGoogle Scholar
  143. Soundy A, Freeman P, Stubbs B, Probst M, Coffee P, Vancampfort D (2014) The transcending benefits of physical activity for individuals with schizophrenia: a systematic review and meta-ethnography. Psychiatry Res 220(1–2):11–19. doi: 10.1016/j.psychres.2014.07.083 PubMedCrossRefGoogle Scholar
  144. Spangaro M, Bosia M, Zanoletti A, Bechi M, Cocchi F, Pirovano A, Lorenzi C, Bramanti P, Benedetti F, Smeraldi E, Cavallaro R (2012) Cognitive dysfunction and glutamate reuptake: effect of EAAT2 polymorphism in schizophrenia. Neurosci Lett 522(2):151–155. doi: 10.1016/j.neulet.2012.06.030 PubMedCrossRefGoogle Scholar
  145. Stanton R, Happell B (2014a) A systematic review of the aerobic exercise program variables for people with schizophrenia. Curr Sports Med Rep 13(4):260–266. doi: 10.1249/JSR.0000000000000069 PubMedCrossRefGoogle Scholar
  146. Stanton R, Happell B (2014b) Exercise for mental illness: a systematic review of inpatient studies. Int J Ment Health Nurs. 23(3):232–242. doi: 10.1111/inm.12045 PubMedCrossRefGoogle Scholar
  147. Sterniczuk R, Dyck RH, Laferla FM, Antle MC (2010) Characterization of the 3xTg-AD mouse model of Alzheimer’s disease: Part 1. Circadian changes. Brain Res 1348:139–148. doi: 10.1016/j.brainres.2010.05.013 PubMedCrossRefGoogle Scholar
  148. Steullet P, Cabungcal JH, Monin A, Dwir D, Donnell P, Cuenod M, Do KQ (2014) Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: a “central hub” in schizophrenia pathophysiology? Schizophr Res. doi: 10.1016/j.schres.2014.06.021 PubMedPubMedCentralGoogle Scholar
  149. Strassnig M, Signorile J, Gonzalez C, Harvey PD (2014) Physical performance and disability in schizophrenia. Schizophr Res Cogn. 1(2):112–121PubMedCentralPubMedCrossRefGoogle Scholar
  150. Suchankova G, Nelson LE, Gerhart-Hines Z, Kelly M, Gaithier M-S, Saha AK, Ido Y, Puigserver P, Ruderman NB (2009) Concurrent regulation of AMP-activated protein kinase and SIRT1 in mammalian cells. Biochem Biophys Res Commun 378:836–841PubMedCentralPubMedCrossRefGoogle Scholar
  151. Tantirangsee N, Assanangkornchai S (2014) Prevalence, patterns, associated factors and severity of substance use among psychotic patients in southern Thailand. Asian J Psychiatr. doi: 10.1016/j.ajp.2014.11.006 PubMedGoogle Scholar
  152. Tyrka AR, Price LH, Kao HT, Porton B, Marsella SA, Carpenter LL (2010) Childhood maltreatment and telomere shortening: preliminary support for an effect of early stress on cellular aging. Biol Psychiatry 67(6):531–534. doi: 10.1016/j.biopsych.2009.08.014 PubMedCentralPubMedCrossRefGoogle Scholar
  153. Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, Aviv A, Spector TD (2005) Obesity, cigarette smoking, and telomere length in women. Lancet 366(9486):662–664PubMedCrossRefGoogle Scholar
  154. Valdes AM, Deary IJ, Gardner J, Kimura M, Lu X, Spector TD, Aviv A, Cherkas LF (2010) Leukocyte telomere length is associated with cognitive performance in healthy women. Neurobiol Aging 31(6):986–992. doi: 10.1016/j.neurobiolaging.2008.07.012 PubMedCentralPubMedCrossRefGoogle Scholar
  155. Vancampfort D, Probst M, Scheewe T, Knapen J, De Herdt A (2012) De Hert M (2012) The functional exercise capacity is correlated with global functioning in patients with schizophrenia. Acta Psychiatr Scand 125(5):382–387. doi: 10.1111/j.1600-0447.2011.01825.x PubMedCrossRefGoogle Scholar
  156. Vancampfort D, De Hert M, Sweers K, De Herdt A, Detraux J, Probst M (2013a) Diabetes, physical activity participation and exercise capacity in patients with schizophrenia. Psychiatry Clin Neurosci 67(6):451–456. doi: 10.1111/pcn.12077 PubMedCrossRefGoogle Scholar
  157. Vancampfort D, Probst M, De Herdt A, Corredeira RM, Carraro A, De Wachter D, De Hert M (2013b) An impaired health related muscular fitness contributes to a reduced walking capacity in patients withschizophrenia: a cross-sectional study. BMC Psychiatry 13:5. doi: 10.1186/1471-244X-13-5 PubMedCentralPubMedCrossRefGoogle Scholar
  158. Vancampfort D, Probst M, De Hert M, Soundy A, Stubbs B, Stroobants M, De Herdt A (2014) Neurobiological effects of physical exercise in schizophrenia: a systematic review. Disabil Rehabil 36:1749–1754PubMedCrossRefGoogle Scholar
  159. Vancampfort D, De Hert M, Stubbs B, Ward PB, Rosenbaum S, Soundy A, Probst M (2015) Negative symptoms are associated with lower autonomous motivation towards physical activity in people with schizophrenia. Compr Psychiatry 56:128–132. doi: 10.1016/j.comppsych.2014.10.007 PubMedCrossRefGoogle Scholar
  160. Verstraelen P, Pintelon I, Nuydens R, Cornelissen F, Meert T, Timmermans JP (2014) Pharmacological characterization of cultivated neuronal networks: relevance to synaptogenesis and synaptic connectivity. Cell Mol Neurobiol 34(5):757–776. doi: 10.1007/s10571-014-0057-6 PubMedCrossRefGoogle Scholar
  161. Werner C, Hanhoun M, Widmann T, Kazakov A, Semenov A, Pöss J, Bauersachs J, Thum T, Pfreundschuh M, Müller P, Haendeler J, Böhm M, Laufs U (2008) Effects of physical exercise on myocardial telomere-regulating proteins, survival pathways, and apoptosis. J Am Coll Cardiol 52(6):470–482. doi: 10.1016/j.jacc.2008.04.034 PubMedCrossRefGoogle Scholar
  162. Werner C, Fürster T, Widmann T, Pöss J, Roggia C, Hanhoun M, Scharhag J, Büchner N, Meyer T, Kindermann W, Haendeler J, Böhm M, Laufs U (2009) Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation 120(24):2438–2447. doi: 10.1161/CIRCULATIONAHA.109.861005 PubMedCrossRefGoogle Scholar
  163. Wobrock T, Hasan A, Falkai P (2012) Innovative treatment approaches in schizophrenia enhancing neuroplasticity: aerobic exercise, erythropoetin and repetitive transcranial magnetic stimulation. Curr Pharm Biotechnol 13(8):1595–1605PubMedCrossRefGoogle Scholar
  164. Wolf SA, Melnik A, Kempermann G (2011) Physical exercise increases adult neurogenesis and telomerase activity, and improves behavioral deficits in a mouse model of schizophrenia. Brain Behav Immun 25(5):971–980. doi: 10.1016/j.bbi.2010.10.014 PubMedCrossRefGoogle Scholar
  165. Wood SJ, Yung AR, McGorry PD, Pantelis C (2011) Neuroimaging and treatment evidence for clinical staging in psychotic disorders: from the at-risk mental state to chronic schizophrenia. Biol Psychiatry 70(7):619–625. doi: 10.1016/j.biopsych.2011.05.034 PubMedCrossRefGoogle Scholar
  166. Young J, Geyer M (2014) Developing treatments for cognitive deficits in schizophrenia: the challenge of translation. J Psychopharmacol. 29(2):178–196PubMedPubMedCentralCrossRefGoogle Scholar
  167. Zhang XY, Chen DC, Tan YL, Luo X, Zuo L, Lv MH, Shah NN, Zunta-Soares GB, Soares JC (2014) Smoking and BDNF Val66Met polymorphism in male schizophrenia: a case-control study. J Psychiatr Res 60C:49–55. doi: 10.1016/j.jpsychires.2014.09.023 Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of GothenburgGothenburgSweden
  2. 2.Department of Biomedical Sciences, Quillen College of MedicineEast Tennessee State UniversityJohnson CityUSA

Personalised recommendations