Advertisement

Neurotoxicity Research

, Volume 28, Issue 4, pp 281–289 | Cite as

Diffusion Kurtosis Imaging Detects Microstructural Alterations in Brain of α-Synuclein Overexpressing Transgenic Mouse Model of Parkinson’s Disease: A Pilot Study

  • Amit Khairnar
  • Peter Latta
  • Eva Drazanova
  • Jana Ruda-Kucerova
  • Nikoletta Szabó
  • Anas Arab
  • Birgit Hutter-Paier
  • Daniel Havas
  • Manfred Windisch
  • Alexandra Sulcova
  • Zenon StarcukJr.
  • Irena RektorovaEmail author
Original Article

Abstract

Evidence suggests that accumulation and aggregation of α-synuclein contribute to the pathogenesis of Parkinson’s disease (PD). The aim of this study was to evaluate whether diffusion kurtosis imaging (DKI) will provide a sensitive tool for differentiating between α-synuclein-overexpressing transgenic mouse model of PD (TNWT-61) and wild-type (WT) littermates. This experiment was designed as a proof-of-concept study and forms a part of a complex protocol and ongoing translational research. Nine-month-old TNWT-61 mice and age-matched WT littermates underwent behavioral tests to monitor motor impairment and MRI scanning using 9.4 Tesla system in vivo. Tract-based spatial statistics (TBSS) and the DKI protocol were used to compare the whole brain white matter of TNWT-61 and WT mice. In addition, region of interest (ROI) analysis was performed in gray matter regions such as substantia nigra, striatum, hippocampus, sensorimotor cortex, and thalamus known to show higher accumulation of α-synuclein. For the ROI analysis, both DKI (6 b-values) protocol and conventional (2 b-values) diffusion tensor imaging (cDTI) protocol were used. TNWT-61 mice showed significant impairment of motor coordination. With the DKI protocol, mean, axial, and radial kurtosis were found to be significantly elevated, whereas mean and radial diffusivity were decreased in the TNWT-61 group compared to that in the WT controls with both TBSS and ROI analysis. With the cDTI protocol, the ROI analysis showed decrease in all diffusivity parameters in TNWT-61 mice. The current study provides evidence that DKI by providing both kurtosis and diffusivity parameters gives unique information that is complementary to cDTI for in vivo detection of pathological changes that underlie PD-like symptomatology in TNWT-61 mouse model of PD. This result is a crucial step in search for a candidate diagnostic biomarker with translational potential and relevance for human studies.

Keywords

Diffusion kurtosis imaging α-Synuclein TNWT-61 Parkinson’s disease Transgenic mice TBSS 

Notes

Acknowledgments

The transgenic mice were supplied for free by the QPS Austria GmbH, Grambach, Austria. The instruments for behavioral tests were kindly provided by Jiri Kucera, Environmental Measuring Systems, Brno, Czech Republic. The authors are grateful to Amy Chen and Heejae Chung for helping with English proof reading. This work was supported by the project “Employment of Newly Graduated Doctors of Science for Scientific Excellence” (CZ.1.07/2.3.00/30.0009) co-financed from the European Social Fund and the state budget of the Czech Republic and by the project “CEITEC - Central European Institute of Technology” (CZ.1.05/1.1.00/02.0068) from the European Regional Development Fund. This study was also financed from the SoMoPro II programme. The research leading to this invention has acquired a financial grant from the People Programme (Marie Curie action) of the Seventh Framework Programme of EU according to the REA Grant Agreement No. 291782. The research is further co-financed by the South-Moravian Region. The study reflects only the author’s views and that the Union is not liable for any use that may be made of the information contained therein.The MR research was also supported by MEYS CR (LO1212), the MR unit and the animal facility (CZ62760225) infrastructure by MEYS CR and EC (CZ.1.05/2.1.00/01.0017) and by ASCR (RVO:68081731).

Compliance with Ethical Standards

Conflict of interest

The authors declare no ethical or financial conflict of interest.

Human and Animal Rights and Informed Consent

All procedures involving experimental animals were performed in accordance with EU Directive no. 2010/63/EU and approved by the Animal Care Committee of the Faculty of Medicine, Masaryk University, Czech Republic, in compliance with Czech Animal Protection Act No. 246/1992.

Supplementary material

12640_2015_9537_MOESM1_ESM.docx (468 kb)
Supplementary material 1 (DOCX 468 kb)

References

  1. Blockx I, Verhoye M, Van Audekerke J, Bergwerf I, Kane JX, Delgado YPR, Veraart J, Jeurissen B, Raber K, von Horsten S, Ponsaerts P, Sijbers J, Leergaard TB, Van der Linden A (2012) Identification and characterization of Huntington related pathology: an in vivo DKI imaging study. NeuroImage 63(2):653–662CrossRefPubMedGoogle Scholar
  2. Boska MD, Hasan KM, Kibuule D, Banerjee R, McIntyre E, Nelson JA, Hahn T, Gendelman HE, Mosley RL (2007) Quantitative diffusion tensor imaging detects dopaminergic neuronal degeneration in a murine model of Parkinson’s disease. Neurobiol Dis 26(3):590–596CrossRefPubMedCentralPubMedGoogle Scholar
  3. Chesselet MF (2008) In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinson’s disease? Exp Neurol 209(1):22–27CrossRefPubMedCentralPubMedGoogle Scholar
  4. Chesselet MF, Richter F, Zhu C, Magen I, Watson MB, Subramaniam SR (2012) A progressive mouse model of Parkinson’s disease: the Thy1-aSyn (“Line 61”) mice. Neurotherapeutics 9(2):297–314CrossRefPubMedCentralPubMedGoogle Scholar
  5. Cheung JS, Wang E, Lo EH, Sun PZ (2012) Stratification of heterogeneous diffusion MRI ischemic lesion with kurtosis imaging: evaluation of mean diffusion and kurtosis MRI mismatch in an animal model of transient focal ischemia. Stroke 43(8):2252–2254CrossRefPubMedCentralPubMedGoogle Scholar
  6. Cochrane CJ, Ebmeier KP (2013) Diffusion tensor imaging in parkinsonian syndromes: a systematic review and meta-analysis. Neurology 80(9):857–864CrossRefPubMedCentralPubMedGoogle Scholar
  7. Delenclos M, Carrascal L, Jensen K, Romero-Ramos M (2014) Immunolocalization of human alpha-synuclein in the Thy1-aSyn (“Line 61”) transgenic mouse line. Neuroscience 277:647–664CrossRefPubMedGoogle Scholar
  8. Delgado y Palacios R, Campo A, Henningsen K, Verhoye M, Poot D, Dijkstra J, Van Audekerke J, Benveniste H, Sijbers J, Wiborg O, Van der Linden A (2011) Magnetic resonance imaging and spectroscopy reveal differential hippocampal changes in anhedonic and resilient subtypes of the chronic mild stress rat model. Biol Psychiatry 70(5):449–457CrossRefPubMedGoogle Scholar
  9. Falangola MF, Guilfoyle DN, Tabesh A, Hui ES, Nie X, Jensen JH, Gerum SV, Hu C, LaFrancois J, Collins HR, Helpern JA (2014) Histological correlation of diffusional kurtosis and white matter modeling metrics in cuprizone-induced corpus callosum demyelination. NMR Biomed 27(8):948–957CrossRefPubMedGoogle Scholar
  10. Fleming SM, Salcedo J, Fernagut PO, Rockenstein E, Masliah E, Levine MS, Chesselet MF (2004) Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein. J Neurosci 24(42):9434–9440CrossRefPubMedGoogle Scholar
  11. Fleming SM, Fernagut PO, Chesselet MF (2005) Genetic mouse models of parkinsonism: strengths and limitations. NeuroRx 2(3):495–503CrossRefPubMedCentralPubMedGoogle Scholar
  12. Fleming SM, Salcedo J, Hutson CB, Rockenstein E, Masliah E, Levine MS, Chesselet MF (2006) Behavioral effects of dopaminergic agonists in transgenic mice overexpressing human wildtype alpha-synuclein. Neuroscience 142(4):1245–1253CrossRefPubMedCentralPubMedGoogle Scholar
  13. Giannelli M, Toschi N, Passamonti L, Mascalchi M, Diciotti S, Tessa C (2012) Diffusion kurtosis and diffusion-tensor MR imaging in Parkinson disease. Radiology 265(2):645–646 author reply 6-7 CrossRefPubMedGoogle Scholar
  14. Hui ES, Du F, Huang S, Shen Q, Duong TQ (2012) Spatiotemporal dynamics of diffusional kurtosis, mean diffusivity and perfusion changes in experimental stroke. Brain Res 1451:100–109CrossRefPubMedCentralPubMedGoogle Scholar
  15. Jensen JH, Helpern JA (2010) MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed 23(7):698–710CrossRefPubMedCentralPubMedGoogle Scholar
  16. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K (2005) Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53(6):1432–1440CrossRefPubMedGoogle Scholar
  17. Kamagata K, Tomiyama H, Motoi Y, Kano M, Abe O, Ito K, Shimoji K, Suzuki M, Hori M, Nakanishi A, Kuwatsuru R, Sasai K, Aoki S, Hattori N (2013) Diffusional kurtosis imaging of cingulate fibers in Parkinson disease: comparison with conventional diffusion tensor imaging. Magn Reson Imaging 31(9):1501–1506CrossRefPubMedGoogle Scholar
  18. Kamagata K, Tomiyama H, Hatano T, Motoi Y, Abe O, Shimoji K, Kamiya K, Suzuki M, Hori M, Yoshida M, Hattori N, Aoki S (2014) A preliminary diffusional kurtosis imaging study of Parkinson disease: comparison with conventional diffusion tensor imaging. Neuroradiology 56(3):251–258CrossRefPubMedGoogle Scholar
  19. Lang AE, Mikulis D (2009) A new sensitive imaging biomarker for Parkinson disease? Neurology 72(16):1374–1375CrossRefPubMedGoogle Scholar
  20. Leemans A, Jeurissen B, Sijbers J, Jones DK (2009) ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. In: 17th Annual Meeting of Intl Soc Mag Reson Med, Hawaii, USAGoogle Scholar
  21. Lerner A, Mogensen MA, Kim PE, Shiroishi MS, Hwang DH, Law M (2013) Clinical applications of diffusion tensor imaging. World Neurosurg 82(1–2):96–109PubMedGoogle Scholar
  22. Meijer FJ, Goraj B (2014) Brain MRI in Parkinson’s disease. Front Biosci (Elite edition) 6:360–369CrossRefGoogle Scholar
  23. Paxinos G, Franklin K (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, San DiegoGoogle Scholar
  24. Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36(6):893–906CrossRefPubMedGoogle Scholar
  25. Rascol O, Lozano A, Stern M, Poewe W (2011) Milestones in Parkinson’s disease therapeutics. Mov Disord 26(6):1072–1082CrossRefPubMedGoogle Scholar
  26. Rolheiser TM, Fulton HG, Good KP et al (2011) Diffusion tensor imaging and olfactory identification testing in early stage Parkinson’s disease. J Neurol 258:1254–1260CrossRefPubMedGoogle Scholar
  27. Schintu N, Frau L, Ibba M, Garau A, Carboni E, Carta AR (2009) Progressive dopaminergic degeneration in the chronic MPTPp mouse model of Parkinson’s disease. Neurotox Res 16(2):127–139CrossRefPubMedGoogle Scholar
  28. Schwarz ST, Abaei M, Gontu V, Morgan PS, Bajaj N, Auer DP (2013) Diffusion tensor imaging of nigral degeneration in Parkinson’s disease: a region-of-interest and voxel-based study at 3 T and systematic review with meta-analysis. Neuroimage Clin 3:481–488CrossRefPubMedCentralPubMedGoogle Scholar
  29. Sgado P, Viaggi C, Pinna A, Marrone C, Vaglini F, Pontis S, Mercuri NB, Morelli M, Corsini GU (2011) Behavioral, neurochemical, and electrophysiological changes in an early spontaneous mouse model of nigrostriatal degeneration. Neurotox Res 20(2):170–181CrossRefPubMedGoogle Scholar
  30. Sierra A, Laitinen T, Lehtimäki K, Rieppo L, Pitkänen A, Gröhn O (2011) Diffusion tensor MRI with tract based spatial statistics and histology reveals undiscovered lesioned areas in kainate model of epilepsy in rat. Brain Struct Funct 216(2):123–135CrossRefPubMedGoogle Scholar
  31. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155CrossRefPubMedGoogle Scholar
  32. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219CrossRefPubMedGoogle Scholar
  33. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4):1487–1505CrossRefPubMedGoogle Scholar
  34. Soria G, Aguilar E, Tudela R, Mullol J, Planas AM, Marin C (2011) In vivo magnetic resonance imaging characterization of bilateral structural changes in experimental Parkinson’s disease: a T2 relaxometry study combined with longitudinal diffusion tensor imaging and manganese-enhanced magnetic resonance imaging in the 6-hydroxydopamine rat model. Eur J Neurosci 33:1551–1560CrossRefPubMedGoogle Scholar
  35. Steven AJ, Zhuo J, Melhem ER (2014) Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain. AJR Am J Roentgenol 202(1):W26–W33CrossRefPubMedGoogle Scholar
  36. Stocchi F, Olanow CW (2013) Obstacles to the development of a neuroprotective therapy for Parkinson’s disease. Mov Disord 28(1):3–7CrossRefPubMedGoogle Scholar
  37. Suidan GL, Duerschmied D, Dillon GM, Vanderhorst V, Hampton TG, Wong SL, Voorhees JR, Wagner DD (2013) Lack of tryptophan hydroxylase-1 in mice results in gait abnormalities. PLoS One 8(3):e59032CrossRefPubMedCentralPubMedGoogle Scholar
  38. Tillerson JL, Miller GW (2003) Grid performance test to measure behavioral impairment in the MPTP-treated-mouse model of parkinsonism. J Neurosci Methods 123(2):189–200CrossRefPubMedGoogle Scholar
  39. Vaillancourt DE, Spraker MB, Prodoehl J et al (2009) High resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 72:1378–1384CrossRefPubMedCentralPubMedGoogle Scholar
  40. Vanhoutte G, Pereson S, Delgado YPR, Guns PJ, Asselbergh B, Veraart J, Sijbers J, Verhoye M, Van Broeckhoven C, Van der Linden A (2013) Diffusion kurtosis imaging to detect amyloidosis in an APP/PS1 mouse model for Alzheimer’s disease. Magn Reson Med 69(4):1115–1121CrossRefPubMedGoogle Scholar
  41. Wang JJ, Lin WY, Lu CS, Weng YH, Ng SH, Wang CH, Liu HL, Hsieh RH, Wan YL, Wai YY (2011) Parkinson disease: diagnostic utility of diffusion kurtosis imaging. Radiology 261(1):210–217CrossRefPubMedGoogle Scholar
  42. Watson MB, Richter F, Lee SK, Gabby L, Wu J, Masliah E, Effros RB, Chesselet MF (2012) Regionally-specific microglial activation in young mice over-expressing human wild type alpha-synuclein. Exp Neurol 237(2):318–334CrossRefPubMedCentralPubMedGoogle Scholar
  43. Zhuo J, Xu S, Proctor JL, Mullins RJ, Simon JZ, Fiskum G, Gullapalli RP (2012) Diffusion kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury. NeuroImage 59(1):467–477CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Amit Khairnar
    • 1
  • Peter Latta
    • 2
  • Eva Drazanova
    • 3
    • 5
  • Jana Ruda-Kucerova
    • 4
    • 5
  • Nikoletta Szabó
    • 6
  • Anas Arab
    • 4
    • 5
  • Birgit Hutter-Paier
    • 7
  • Daniel Havas
    • 7
  • Manfred Windisch
    • 8
  • Alexandra Sulcova
    • 4
  • Zenon StarcukJr.
    • 3
    • 2
  • Irena Rektorova
    • 1
    Email author
  1. 1.Applied Neuroscience Research GroupCEITEC - Central European Institute of Technology, Masaryk UniversityBrnoCzech Republic
  2. 2.Multimodal and Functional Imaging Laboratory, CEITEC - Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
  3. 3.Institute of Scientific InstrumentsAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  4. 4.Experimental and Applied Neuropsychopharmacology Group, CEITEC - Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
  5. 5.Department of Pharmacology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
  6. 6.Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical CentreUniversity of SzegedSzegedHungary
  7. 7.QPS Austria GmbHGrambachAustria
  8. 8.NeuroScios GmbHGrazAustria

Personalised recommendations