Skip to main content
Log in

Improvement of Mitochondrial Function by Paliperidone Attenuates Quinolinic Acid-Induced Behavioural and Neurochemical Alterations in Rats: Implications in Huntington’s Disease

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Quinolinic acid (QA)-induced neurotoxicity involves a cascade of events such as increased calcium concentration in cytoplasm, exhaustive ATP depletion, oxidative stress, as well as selective GABAergic, dopaminergic, and cholinergic neuronal death. Clinical data hint towards the connection between signalling of dopaminergic system and efficient amelioration of chorea following a tetrabenazine administration in Huntington’s disease patients. Therefore, the present study has been designed to explore the neuroprotective potential of paliperidone, an active metabolite of risperidone (a dopaminergic antagonist) against QA-induced neurotoxicity and related complications in rats. QA (200 nmol) was administered bilaterally to the striatum over a period of 2 min by means of a 28-gauge stainless steel needle attached to a Hamilton syringe. The study protocol involves seven treatment groups (n = 12): naïve, sham, control (QA), paliperidone (0.5, 1 and 2 mg/kg) and paliperidone (2) per se. Single bilateral intrastriatal injection of QA (200 nmol/2 μl saline) significantly caused motor incordination, memory impairment, oxidative damage, decrease in biogenic amines levels, cellular alterations (TNF-α, IL-6, PGE2, PGF2α, caspase-3, BDNF, mitochondrial function) and damage of striatal neurons compared to the sham treatment. Treatment with paliperidone (0.5, 1 and 2 mg/kg) for 21 days significantly attenuated the QA-induced behavioural (motor and memory function), neurochemical (antioxidant enzymes and biogenic amines) and cellular alterations, as well as striatal neurodegeneration. The study indicated that modulation of dopaminergic pathway by paliperidone treatment could be a useful approach in the management of motor and memory abnormality in HD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aboul-Fotouh S, Elgayar N (2013) Atypical antipsychotics such as risperidone, but not paliperidone, worsen vascular endothelial function via upregulation of adhesion molecules VCAM-1, ICAM-1, and E-selectin in diabetic rats. Can J Physiol Pharmacol 91(12):1119–1126

    Article  PubMed  CAS  Google Scholar 

  • Álamo C, López-Muñoz F (2013) The pharmacological role and clinical applications of antipsychotics’ active metabolites: paliperidone versus risperidone. Clin Exp Pharmacol 3:117

    Article  Google Scholar 

  • Aldinio C, Mazzari S, Toffano G, Köhler C, Schwarcz R (1985) Effects of intracerebral injections of quinolinic acid on serotonergic neurons in the rat brain. Brain Res 341(1):57–65

    Article  PubMed  CAS  Google Scholar 

  • Aldridge JW, Berridge KC, Rosen AR (2004) Basal ganglia neural mechanisms of natural movement sequences. Can J Physiol Pharmacol 82(8–9):732–739

    Article  PubMed  CAS  Google Scholar 

  • Amori L, Wu HQ, Marinozzi M, Pellicciari R, Guidetti P, Schwarcz R (2009) Specific inhibition of kynurenate synthesis enhances extracellular dopamine levels in the rodent striatum. Neuroscience 159(1):196–203

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15(4):961–973

    Article  PubMed  CAS  Google Scholar 

  • Araujo DM, Cherry SR, Tatsukawa KJ, Toyokuni T, Kornblum HI (2000) Deficits in striatal dopamine D2 receptors and energy metabolism detected by in vivo MicroPET imaging in a rat model of Huntington’s disease. Exp Neurol 166(2):287–297

    Article  PubMed  CAS  Google Scholar 

  • Aravagiri M, Yuwiler A, Marder SR (1998) Distribution after repeated oral administration of different dose levels of risperidone and 9-hydroxy-risperidone in the brain and other tissues of rat. Psychopharmacology 139(4):356–363

    Article  PubMed  CAS  Google Scholar 

  • Bano D, Zanetti F, Mende Y, Nicotera P (2011) Neurodegenerative processes in Huntington’s disease. Cell Death Dis 2:e228

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem 73(3):1127–1137

    Article  PubMed  CAS  Google Scholar 

  • Braidy N, Grant R, Adams S, Brew BJ, Guillemin GJ (2009) Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotox Res 16(1):77–86

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Gu ZL, Lin F, Han R, Qin ZH (2005) Caspase-1 inhibitor Ac-YVAD-CHO attenuates quinolinic acid-induced increases in p53 and apoptosis in rat striatum. Acta Pharmacol Sin 26(2):150–154

    Article  PubMed  CAS  Google Scholar 

  • Cass WA (1997) Decreases in evoked overflow of dopamine in rat striatum after neurotoxic doses of methamphetamine. J Pharmacol Exp Ther 280(1):105–113

    PubMed  CAS  Google Scholar 

  • Charvin D, Vanhoutte P, Pages C, Borrelli E, Caboche J (2005) Unraveling a role for dopamine in Huntington’s disease: the dual role of reactive oxygen species and D2 receptor stimulation. Proc Natl Acad Sci U S A 102(34):12218–12223

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Clark JB, Nicklas WJ (1970) The metabolism of rat brain mitochondria: preparation and characterization. J Biol Chem 245(18):4724–4731

    PubMed  CAS  Google Scholar 

  • Corena-McLeod Mdel P, Oliveros A, Charlesworth C, Madden B, Liang YQ, Boules M, Shaw A, Williams K, Richelson E (2008) Paliperidone as a mood stabilizer: a pre-frontal cortex synaptoneurosomal proteomics comparison with lithium and valproic acid after chronic treatment reveals similarities in protein expression. Brain Res 1233:8–19

    Article  PubMed  Google Scholar 

  • Corena-McLeod M, Walss-Bass C, Oliveros A, Gordillo Villegas A, Ceballos C, Charlesworth CM, Madden B, Linser PJ, Van Ekeris L, Smith K, Richelson E (2013) New model of action for mood stabilizers: phosphoproteome from rat pre-frontal cortex synaptoneurosomal preparations. PLoS One 8(5):e52147

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  PubMed  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  • Estabrook RW (1967) Mitochondrial respiratory control and the polarographic measurement of ADP: O ratios. Methods Enzymol 10:41–47

    Article  CAS  Google Scholar 

  • Ferrer I, Goutan E, Marin C, Rey MJ, Ribalta T (2000) Brain-derived neurotrophic factor in Huntington disease. Brain Res 866(1–2):257–261

    Article  PubMed  CAS  Google Scholar 

  • Ganzella M, Jardim FM, Boeck CR, Vendite D (2006) Time course of oxidative events in the hippocampus following intracerebroventricular infusion of quinolinic acid in mice. Neurosci Res 55(4):397–402

    Article  PubMed  CAS  Google Scholar 

  • Gasso P, Mas S, Molina O, Bernardo M, Lafuente A, Parellada E (2012) Neurotoxic/neuroprotective activity of haloperidol, risperidone and paliperidone in neuroblastoma cells. Prog Neuropsychopharmacol Biol Psychiatry 36(1):71–77

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci 15(4):133–139

    Article  PubMed  CAS  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177(2):751–766

    PubMed  CAS  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15 N]nitrate in biological fluids. Anal Biochem 126(1):131–138

    Article  PubMed  CAS  Google Scholar 

  • Henry RA, Hughes SM, Connor B (2007) AAV-mediated delivery of BDNF augments neurogenesis in the normal and quinolinic acid-lesioned adult rat brain. Eur J Neurosci 25(12):3513–3525

    Article  PubMed  Google Scholar 

  • Hinton SC, Paulsen JS, Hoffmann RG, Reynolds NC, Zimbelman JL, Rao SM (2007) Motor timing variability increases in preclinical Huntington’s disease patients as estimated onset of motor symptoms approaches. J Int Neuropsychol Soc 13(3):539–543

    Article  PubMed  Google Scholar 

  • Hunter RL, Dragicevic N, Seifert K, Choi DY, Liu M, Kim HC, Cass WA, Sullivan PG, Bing G (2007) Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J Neurochem 100(5):1375–1386

    Article  PubMed  CAS  Google Scholar 

  • Huntington Study Group (2006) Tetrabenazine as antichorea therapy in Huntington disease: a randomized controlled trial. Neurology 66(3):366–372

    Article  Google Scholar 

  • Jakel RJ, Maragos WF (2000) Neuronal cell death in Huntington’s disease: a potential role for dopamine. Trends Neurosci 23(6):239–245

    Article  PubMed  CAS  Google Scholar 

  • Kalonia H, Mishra J, Kumar A (2012) Targeting neuro-inflammatory cytokines and oxidative stress by minocycline attenuates quinolinic acid induced Huntington’s disease-like symptoms in rats. Neurotox Res 22(4):310–320

    Article  PubMed  CAS  Google Scholar 

  • King TE (1967) Preparation of succinate dehydrogenase and reconstitution of succinate oxidase. In: Estabrook RD, Pullman ME (eds) Methods enzymol, vol 10. Academic Press, New York, pp 322–331

  • King TE, Howard RL (1967) Preparations and properties of soluble NADH dehydrogenases from cardiac muscle. In: Estabrook RD, Pullman ME (eds) Methods Enzymol, vol 10. Academic Press, New York, pp 275–294

  • Klapdor K, Dulfer BG, Hammann A, Van der Staay FJ (1997) A low-cost method to analyse footprint patterns. J Neurosci Methods 75(1):49–54

    Article  PubMed  CAS  Google Scholar 

  • Klawans HC, Paulson GW, Barbeau A (1970) Predictive test for Huntington’s chorea. Lancet 2(7684):1185–1186

    Article  PubMed  CAS  Google Scholar 

  • Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Archiv Biochem Biophys 186(1):189–195

    Article  CAS  Google Scholar 

  • Kumar A, Chaudhary T, Mishra J (2013a) Minocycline modulates neuroprotective effect of hesperidin against quinolinic acid induced Huntington’s disease like symptoms in rats: behavioral, biochemical, cellular and histological evidences. Eur J Pharmacol 720(1–3):16–28

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Sharma N, Mishra J, Kalonia H (2013b) Synergistical neuroprotection of rofecoxib and statins against malonic acid induced Huntington’s disease like symptoms and related cognitive dysfunction in rats. Eur J Pharmacol 709(1–3):1–12

    Article  PubMed  CAS  Google Scholar 

  • Lastres-Becker I, de Miguel R, De Petrocellis L, Makriyannis A, Di Marzo V, Fernandez-Ruiz J (2003) Compounds acting at the endocannabinoid and/or endovanilloid systems reduce hyperkinesia in a rat model of Huntington’s disease. J Neurochem 84(5):1097–1109

    Article  PubMed  CAS  Google Scholar 

  • Lauterbach EC (2012) Psychotropic drug effects on gene transcriptomics relevant to Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry 38(2):107–115

    Article  PubMed  CAS  Google Scholar 

  • Lauterbach E (2013) Neuroprotective effects of psychotropic drugs in Huntington’s disease. Int J Mol Sci 14(11):22558–22603

    Article  PubMed  PubMed Central  Google Scholar 

  • Lillie RD (1965) Histopathologic technic and practical histochemistry, 3rd edn. McGraw-Hill Book Co., New York

  • Liu Y, Peterson DA, Kimura H, Schubert D (1997) Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem 69(2):581–593

    Article  PubMed  CAS  Google Scholar 

  • Luck H (1965) Catalase. In: Hans UB (ed) Methods of enzymatic analysis, 2nd edn. Academic Press, New York, pp 885–894

    Chapter  Google Scholar 

  • Macaya A, Burke RE (1992) Effect of striatal lesion with quinolinate on the development of substantia nigra dopaminergic neurons: a quantitative morphological analysis. Dev Neurosci 14(5–6):362–368

    Article  PubMed  CAS  Google Scholar 

  • Miranda AF, Boegman RJ, Beninger RJ, Jhamandas K (1997) Protection against quinolinic acid-mediated excitotoxicity in nigrostriatal dopaminergic neurons by endogenous kynurenic acid. Neuroscience 78(4):967–975

    Article  PubMed  CAS  Google Scholar 

  • Mishra J, Chaudhary T, Kumar A (2014) Rosiglitazone synergizes the neuroprotective effects of valproic acid against quinolinic acid-induced neurotoxicity in rats: targeting PPARgamma and HDAC pathways. Neurotox Res. doi:10.1007/s12640-014-9458-z

    Google Scholar 

  • Patel BA, Arundell M, Parker KH, Yeoman MS, O’Hare D (2005) Simple and rapid determination of serotonin and catecholamines in biological tissue using high-performance liquid chromatography with electrochemical detection. J Chromatogr B 818(2):269–276

    Article  CAS  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, San Diego

    Google Scholar 

  • Peng L, Zhu D, Feng X, Dong H, Yue Q, Zhang J, Gao Q, Hao J, Zhang X, Liu Z, Sun J (2013) Paliperidone protects prefrontal cortical neurons from damages caused by MK-801 via Akt1/GSK3β signaling pathway. Schizophr Res 147(1):14–23

    Article  PubMed  Google Scholar 

  • Ramaswamy S, McBride JL, Kordower JH (2007) Animal models of Huntington’s disease. ILAR J 48(4):356–373

    Article  PubMed  CAS  Google Scholar 

  • Richelson E, Souder T (2000) Binding of antipsychotic drugs to human brain receptors: focus on newer generation compounds. Life Sci 68(1):29–39

    Article  PubMed  CAS  Google Scholar 

  • Richtand NM, Ahlbrand R, Horn P, Stanford K, Bronson SL, McNamara RK (2011) Effects of risperidone and paliperidone pre-treatment on locomotor response following prenatal immune activation. J Psychiatr Res 45(9):1194–1201

    Article  PubMed  PubMed Central  Google Scholar 

  • Roenker NL, Gudelsky G, Ahlbrand R, Bronson SL, Kern JR, Waterman H, Richtand NM (2011) Effect of paliperidone and risperidone on extracellular glutamate in the prefrontal cortex of rats exposed to prenatal immune activation or MK-801. Neurosci Lett 500(3):167–171

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rossato JI, Zeni G, Mello CF, Rubin MA, Rocha JB (2002) Ebselen blocks the quinolinic acid-induced production of thiobarbituric acid reactive species but does not prevent the behavioral alterations produced by intra-striatal quinolinic acid administration in the rat. Neurosci Lett 318:137–140

    Article  PubMed  CAS  Google Scholar 

  • Ruiz A, Matute C, Alberdi E (2010) Intracellular Ca2+ release through ryanodine receptors contributes to AMPA receptor-mediated mitochondrial dysfunction and ER stress in oligodendrocytes. Cell Death Dis 1:e54

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Santamaria A, Rios C (1993) MK-801, an N-methyl-d-aspartate receptor antagonist, blocks quinolinic acid-induced lipid peroxidation in rat corpus striatum. Neurosci Lett 159(1–2):51–54

    Article  PubMed  CAS  Google Scholar 

  • Scattoni ML, Valanzano A, Pezzola A, March ZD, Fusco FR, Popoli P, Calamandrei G (2007) Adenosine A2A receptor blockade before striatal excitotoxic lesions prevents long term behavioural disturbances in the quinolinic rat model of Huntington’s disease. Behav Brain Res 176:216–221

    Article  PubMed  CAS  Google Scholar 

  • Shear DA, Dong J, Gundy CD, Haik-Creguer KL, Dunbar GL (1998) Comparison of intrastriatal injections of quinolinic acid and 3-nitropropionic acid for use in animal models of Huntington’s disease. Prog Neuro Psychopharmacol Biol Psychiatry 22(7):1217–1240

    Article  CAS  Google Scholar 

  • Sottocasa GL, Kuylenstierna B, Ernster L, Bergstrand A (1967) An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol 32:415–438

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Suzuki H, Gen K, Inoue Y, Hibino H, Mikami A, Matsumoto H, Mikami K (2013) The influence of switching from risperidone to paliperidone on the extrapyramidal symptoms and cognitive function in elderly patients with schizophrenia: a preliminary open-label trial. Int J Psychiatry Clin Pract 13:13

    Google Scholar 

  • Tang TS, Slow E, Lupu V, Stavrovskaya IG, Sugimori M, Llinas R, Kristal BS, Hayden MR, Bezprozvanny I (2005) Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington’s disease. Proc Natl Acad Sci USA 102(7):2602–2607

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vermeir M, Naessens I, Remmerie B, Mannens G, Hendrickx J, Sterkens P, Talluri K, Boom S, Eerdekens M, van Osselaer N, Cleton A (2008) Absorption, metabolism, and excretion of paliperidone, a new monoaminergic antagonist, in humans. Drug Metab Dispos 36(4):769–779

    Article  PubMed  CAS  Google Scholar 

  • Vonsattel JP, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57(5):369–384

    Article  PubMed  CAS  Google Scholar 

  • Wills ED (1966) Mechanisms of lipid peroxide formation in animal tissues. Biochem J 99(3):667–676

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yang MC, Lung FW (2011) Neuroprotection of paliperidone on SH-SY5Y cells against beta-amyloid peptide (25-35), N-methyl-4-phenylpyridinium ion, and hydrogen peroxide-induced cell death. Psychopharmacology 217(3):397–410

    Article  PubMed  CAS  Google Scholar 

  • Zahler WL, Cleland WW (1968) A specific and sensitive assay for disulfides. J Biol Chem 243(4):716–719

    PubMed  CAS  Google Scholar 

  • Zuccato C, Cattaneo E (2007) Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol 81(5–6):294–330

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Jawaharlal Nehru Memorial Fund (JNMF) doctoral research scholarship awarded to Jitendriya Mishra by JNMF, New Delhi is gratefully acknowledged.

Conflict of interest

The authors have no competing financial interests to declare. There is no conflict of interest between any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, J., Kumar, A. Improvement of Mitochondrial Function by Paliperidone Attenuates Quinolinic Acid-Induced Behavioural and Neurochemical Alterations in Rats: Implications in Huntington’s Disease. Neurotox Res 26, 363–381 (2014). https://doi.org/10.1007/s12640-014-9469-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-014-9469-9

Keywords

Navigation