Neurotoxicity Research

, Volume 24, Issue 1, pp 80–93

Differential Responses of Hippocampal Neurons and Astrocytes to Nicotine and Hypoxia in the Fetal Guinea Pig

  • Tamara Blutstein
  • Michael A. Castello
  • Shaun S. Viechweg
  • Maria M. Hadjimarkou
  • Joseph A. McQuail
  • Mary Holder
  • Loren P. Thompson
  • Jessica A. Mong
Original Article

Abstract

In utero exposure to cigarette smoke has severe consequences for the developing fetus, including increased risk of birth complications and behavioral and learning disabilities later in life. Evidence from animal models suggests that the cognitive deficits may be a consequence of in utero nicotine exposure in the brain during critical developmental periods. However, maternal smoking exposes the fetus to not only nicotine but also a hypoxic intrauterine environment. Thus, both nicotine and hypoxia are capable of initiating cellular cascades, leading to long-term changes in synaptic patterning that have the potential to affect cognitive functions. This study investigates the combined effect of in utero exposure to nicotine and hypoxia on neuronal and glial elements in the hippocampal CA1 field. Fetal guinea pigs were exposed in utero to normoxic or hypoxic conditions in the presence or absence of nicotine. Hypoxia increased the protein levels of matrix metalloproteinase-9 (MMP-9) and synaptophysin and decreased the neural density as measured by NeuN immunoreactivity (ir). Nicotine exposure had no effect on these neuronal parameters but dramatically increased the density of astrocytes immunopositive for glial fibrillary acidic protein (GFAP). Further investigation into the effects of in utero nicotine exposure revealed that both GFAP-ir and NeuN-ir in the CA1 field were significantly reduced in adulthood. Taken together, our data suggest that prenatal exposure to nicotine and hypoxia not only alters synaptic patterning acutely during fetal development, but that nicotine also has long-term consequences that are observed well into adulthood. Moreover, these effects most likely take place through distinct mechanisms.

Keywords

Neuronal insult Synaptic patterning Matrix metalloproteinase Glial fibrillary acidic protein CNS development Smoking 

References

  1. Abdel-Rahman A, Dechkovskaia AM, Mehta-Simmons H, Sutton JM, Guan X, Khan WA, Abou-Donia MB (2004) Maternal exposure to nicotine and chlorpyrifos, alone and in combination, leads to persistently elevated expression of glial fibrillary acidic protein in the cerebellum of the offspring in late puberty. Arch Toxicol 78(8):467–476. doi:10.1007/s00204-004-0560-5 PubMedCrossRefGoogle Scholar
  2. Abdel-Rahman A, Dechkovskaia AM, Sutton JM, Chen WC, Guan X, Khan WA, Abou-Donia MB (2005) Maternal exposure of rats to nicotine via infusion during gestation produces neurobehavioral deficits and elevated expression of glial fibrillary acidic protein in the cerebellum and CA1 subfield in the offspring at puberty. Toxicology 209(3):245–261. doi:10.1016/j.tox.2004.12.037 PubMedCrossRefGoogle Scholar
  3. Abou-Donia MB, Khan WA, Dechkovskaia AM, Goldstein LB, Bullman SL, Abdel-Rahman A (2006) In utero exposure to nicotine and chlorpyrifos alone, and in combination produces persistent sensorimotor deficits and Purkinje neuron loss in the cerebellum of adult offspring rats. Arch Toxicol 80(9):620–631. doi:10.1007/s00204-006-0077-1 PubMedCrossRefGoogle Scholar
  4. Barrett RD, Bennet L, Davidson J, Dean JM, George S, Emerald BS, Gunn AJ (2007) Destruction and reconstruction: hypoxia and the developing brain. Birth Defects Res C, Embryo Today 81(3):163–176. doi:10.1002/bdrc.20095 CrossRefGoogle Scholar
  5. Benowitz NL, Gourlay SG (1997) Cardiovascular toxicity of nicotine: implications for nicotine replacement therapy. J Am Coll Cardiol 29(7):1422–1431PubMedCrossRefGoogle Scholar
  6. Bignami A, Eng LF, Dahl D, Uyeda CT (1972) Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res 43(2):429–435PubMedCrossRefGoogle Scholar
  7. Bilousova TV, Rusakov DA, Ethell DW, Ethell IM (2006) Matrix metalloproteinase-7 disrupts dendritic spines in hippocampal neurons through NMDA receptor activation. J Neurochem 97(1):44–56. doi:10.1111/j.1471-4159.2006.03701.x PubMedCrossRefGoogle Scholar
  8. Byrnes ML, Reynolds JN, Brien JF (2003) Brain growth spurt-prenatal ethanol exposure and the guinea pig hippocampal glutamate signaling system. Neurotoxicol Teratol 25(3):303–310PubMedCrossRefGoogle Scholar
  9. Candelario-Jalil E, Yang Y, Rosenberg GA (2009) Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience 158(3):983–994. doi:10.1016/j.neuroscience.2008.06.025 PubMedCrossRefGoogle Scholar
  10. Culican SM, Baumrind NL, Yamamoto M, Pearlman AL (1990) Cortical radial glia: identification in tissue culture and evidence for their transformation to astrocytes. J Neurosci 10(2):684–692PubMedGoogle Scholar
  11. Dobbing J, Sands J (1970) Growth and development of the brain and spinal cord of the guinea pig. Brain Res 17(1):115–123PubMedCrossRefGoogle Scholar
  12. Eng LF (1985) Glial fibrillary acidic protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes. J Neuroimmunol 8(4–6):203–214PubMedCrossRefGoogle Scholar
  13. Ethell IM, Ethell DW (2007) Matrix metalloproteinases in brain development and remodeling: synaptic functions and targets. J Neurosci Res 85(13):2813–2823. doi:10.1002/jnr.21273 PubMedCrossRefGoogle Scholar
  14. Gaither KH, Brunner Huber LR, Thompson ME, Huet-Hudson YM (2009) Does the use of nicotine replacement therapy during pregnancy affect pregnancy outcomes? Matern Child Health J 13(4):497–504. doi:10.1007/s10995-008-0361-1 PubMedCrossRefGoogle Scholar
  15. Ginzel KH, Maritz GS, Marks DF, Neuberger M, Pauly JR, Polito JR, Schulte-Hermann R, Slotkin TA (2007) Critical review: nicotine for the fetus, the infant and the adolescent? J Health Psychol 12(2):215–224. doi:10.1177/1359105307074240 PubMedCrossRefGoogle Scholar
  16. Hallak M, Hotra JW, Kupsky WJ (2000) Magnesium sulfate protection of fetal rat brain from severe maternal hypoxia. Obstet Gynecol 96(1):124–128PubMedCrossRefGoogle Scholar
  17. Hejmadi MV, Dajas-Bailador F, Barns SM, Jones B, Wonnacott S (2003) Neuroprotection by nicotine against hypoxia-induced apoptosis in cortical cultures involves activation of multiple nicotinic acetylcholine receptor subtypes. Molecular and cellular neurosciences 24(3):779–786PubMedCrossRefGoogle Scholar
  18. Hernandez-Morales M, Garcia-Colunga J (2009) Effects of nicotine on K+ currents and nicotinic receptors in astrocytes of the hippocampal CA1 region. Neuropharmacology 56(6–7):975–983. doi:10.1016/j.neuropharm.2009.01.024 PubMedCrossRefGoogle Scholar
  19. Holder MK, Mong JA (2010) Methamphetamine enhances paced mating behaviors and neuroplasticity in the medial amygdala of female rats. Horm Behav 58(3):519–525. doi:10.1016/j.yhbeh.2010.04.006 PubMedCrossRefGoogle Scholar
  20. Hsu JY, Bourguignon LY, Adams CM, Peyrollier K, Zhang H, Fandel T, Cun CL, Werb Z, Noble-Haeusslein LJ (2008) Matrix metalloproteinase-9 facilitates glial scar formation in the injured spinal cord. J Neurosci 28(50):13467–13477. doi:10.1523/JNEUROSCI.2287-08.2008 PubMedCrossRefGoogle Scholar
  21. Inder TE, Warfield SK, Wang H, Huppi PS, Volpe JJ (2005) Abnormal cerebral structure is present at term in premature infants. Pediatrics 115(2):286–294. doi:10.1542/peds.2004-0326 PubMedCrossRefGoogle Scholar
  22. Jauniaux E, Gulbis B, Acharya G, Thiry P, Rodeck C (1999) Maternal tobacco exposure and cotinine levels in fetal fluids in the first half of pregnancy. Obstet Gynecol 93(1):25–29PubMedCrossRefGoogle Scholar
  23. Klein T, Bischoff R (2011) Physiology and pathophysiology of matrix metalloproteases. Amino Acids 41(2):271–290. doi:10.1007/s00726-010-0689-x PubMedCrossRefGoogle Scholar
  24. Klein D, Kern RM, Sokol RZ (1995) A method for quantification and correction of proteins after transfer to immobilization membranes. Biochem Mol Biol Int 36(1):59–66PubMedGoogle Scholar
  25. Kyrkanides S, O’Banion MK, Whiteley PE, Daeschner JC, Olschowka JA (2001) Enhanced glial activation and expression of specific CNS inflammation-related molecules in aged versus young rats following cortical stab injury. J Neuroimmunol 119(2):269–277PubMedCrossRefGoogle Scholar
  26. Lagnado JR, Hardy M (1967) Brain esterases during development. Nature 214(5094):1207–1210PubMedCrossRefGoogle Scholar
  27. Lambers DS, Clark KE (1996) The maternal and fetal physiologic effects of nicotine. Semin Perinatol 20(2):115–126PubMedCrossRefGoogle Scholar
  28. Lee JE, Kim YJ, Kim JY, Lee WT, Yenari MA, Giffard RG (2004) The 70 kDa heat shock protein suppresses matrix metalloproteinases in astrocytes. NeuroReport 15(3):499–502PubMedCrossRefGoogle Scholar
  29. Liang K, Poytress BS, Chen Y, Leslie FM, Weinberger NM, Metherate R (2006) Neonatal nicotine exposure impairs nicotinic enhancement of central auditory processing and auditory learning in adult rats. Eur J Neurosci 24(3):857–866. doi:10.1111/j.1460-9568.2006.04945.x PubMedCrossRefGoogle Scholar
  30. Luparello TJ (1967) Stereotaxic atlas of the forebrain of the guinea pig. Williams and Wilkins, BaltimoreGoogle Scholar
  31. Lv J, Mao C, Zhu L, Zhang H, Pengpeng H, Xu F, Liu Y, Zhang L, Xu Z (2008) The effect of prenatal nicotine on expression of nicotine receptor subunits in the fetal brain. Neurotoxicology 29(4):722–726. doi:10.1016/j.neuro.2008.04.015 PubMedCrossRefGoogle Scholar
  32. Martin JA, Kung HC, Mathews TJ, Hoyert DL, Strobino DM, Guyer B, Sutton SR (2008) Annual summary of vital statistics: 2006. Pediatrics 121(4):788–801. doi:10.1542/peds.2007-3753 PubMedCrossRefGoogle Scholar
  33. Mong JA, Blutstein T (2006) Estradiol modulation of astrocytic form and function: implications for hormonal control of synaptic communication. Neuroscience 138(3):967–975PubMedCrossRefGoogle Scholar
  34. Muir EM, Adcock KH, Morgenstern DA, Clayton R, von Stillfried N, Rhodes K, Ellis C, Fawcett JW, Rogers JH (2002) Matrix metalloproteases and their inhibitors are produced by overlapping populations of activated astrocytes. Brain Res Mol Brain Res 100(1–2):103–117PubMedCrossRefGoogle Scholar
  35. Nanri M, Yamamoto J, Miyake H, Watanabe H (1998) Protective effect of GTS-21, a novel nicotinic receptor agonist, on delayed neuronal death induced by ischemia in gerbils. Jpn J Pharmacol 76(1):23–29PubMedCrossRefGoogle Scholar
  36. O’Callaghan JP (1993) Quantitative features of reactive gliosis following toxicant-induced damage of the CNS. Ann N Y Acad Sci 679:195–210PubMedCrossRefGoogle Scholar
  37. Oh C, Dong Y, Liu H, Thompson LP (2008) Intrauterine hypoxia upregulates proinflammatory cytokines and matrix metalloproteinases in fetal guinea pig hearts. Am J Obstet Gynecol 199(1):78 e71–e76. doi:10.1016/j.ajog.2007.12.004
  38. Oja SS, Uusitalo AJ, Vahvelainen ML, Piha RS (1968) Changes in cerebral and hepatic amino acids in the rat and guinea pig during development. Brain Res 11(3):655–661PubMedCrossRefGoogle Scholar
  39. Okada Y, Shinmei M, Tanaka O, Naka K, Kimura A, Nakanishi I, Bayliss MT, Iwata K, Nagase H (1992) Localization of matrix metalloproteinase 3 (stromelysin) in osteoarthritic cartilage and synovium. Lab Invest 66(6):680–690PubMedGoogle Scholar
  40. Olesen KM, Auger AP (2005) Sex differences in Fos protein expression in the neonatal rat brain. J Neuroendocrinol 17(4):255–261. doi:10.1111/j.1365-2826.2005.01302.x PubMedCrossRefGoogle Scholar
  41. Palkovits M, Brownstein MJ (1988) Maps and guide to microdissection of the rat brain. Elsevier, New YorkGoogle Scholar
  42. Pekny M, Pekna M (2004) Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol 204(4):428–437. doi:10.1002/path.1645 PubMedCrossRefGoogle Scholar
  43. Placzek AN, Zhang TA, Dani JA (2009) Nicotinic mechanisms influencing synaptic plasticity in the hippocampus. Acta Pharmacol Sin 30(6):752–760. doi:10.1038/aps.2009.39 PubMedCrossRefGoogle Scholar
  44. Ranasinghe HS, Williams CE, Christophidis LJ, Mitchell MD, Fraser M, Scheepens A (2009) Proteolytic activity during cortical development is distinct from that involved in hypoxic ischemic injury. Neuroscience 158(2):732–744. doi:10.1016/j.neuroscience.2008.07.069 PubMedCrossRefGoogle Scholar
  45. Rees S, Harding R, Walker D (2008) An adverse intrauterine environment: implications for injury and altered development of the brain. Int J Dev Neurosci 26(1):3–11. doi:10.1016/j.ijdevneu.2007.08.020 PubMedCrossRefGoogle Scholar
  46. Rivera S, Ogier C, Jourquin J, Timsit S, Szklarczyk AW, Miller K, Gearing AJ, Kaczmarek L, Khrestchatisky M (2002) Gelatinase B and TIMP-1 are regulated in a cell- and time-dependent manner in association with neuronal death and glial reactivity after global forebrain ischemia. Eur J Neurosci 15(1):19–32PubMedCrossRefGoogle Scholar
  47. Rosa AO, Egea J, Gandia L, Lopez MG, Garcia AG (2006) Neuroprotection by nicotine in hippocampal slices subjected to oxygen-glucose deprivation: involvement of the alpha7 nAChR subtype. J Mol Neurosci 30(1–2):61–62. doi:10.1385/JMN:30:1:61 PubMedCrossRefGoogle Scholar
  48. Rosenberg GA, Cunningham LA, Wallace J, Alexander S, Estrada EY, Grossetete M, Razhagi A, Miller K, Gearing A (2001) Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res 893(1–2):104–112PubMedCrossRefGoogle Scholar
  49. Roy TS, Seidler FJ, Slotkin TA (2002) Prenatal nicotine exposure evokes alterations of cell structure in hippocampus and somatosensory cortex. J Pharmacol Expl Therap 300(1):124–133CrossRefGoogle Scholar
  50. Schmechel DE, Rakic P (1979) A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat Embryol 156(2):115–152PubMedCrossRefGoogle Scholar
  51. Slavin AJ, Johns TG, Orian JM, Bernard CC (1997) Regulation of myelin oligodendrocyte glycoprotein in different species throughout development. Dev Neurosci 19(1):69–78PubMedCrossRefGoogle Scholar
  52. Slotkin TA (1998) Fetal nicotine or cocaine exposure: which one is worse? J Pharmacol Exp Therap 285(3):931–945Google Scholar
  53. Slotkin TA (2004) Cholinergic systems in brain development and disruption by neurotoxicants: nicotine, environmental tobacco smoke, organophosphates. Toxicol Appl Pharmacol 198(2):132–151. doi:10.1016/j.taap.2003.06.001 PubMedCrossRefGoogle Scholar
  54. Slotkin TA (2008) If nicotine is a developmental neurotoxicant in animal studies, dare we recommend nicotine replacement therapy in pregnant women and adolescents? Neurotoxicol Teratol 30(1):1–19PubMedCrossRefGoogle Scholar
  55. Slotkin TA, Epps TA, Stenger ML, Sawyer KJ, Seidler FJ (1999) Cholinergic receptors in heart and brainstem of rats exposed to nicotine during development: implications for hypoxia tolerance and perinatal mortality. Brain Res Dev Brain Res 113(1–2):1–12PubMedCrossRefGoogle Scholar
  56. Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99(2):195–231PubMedCrossRefGoogle Scholar
  57. Suzuki K, Tanaka T, Kondo N, Minai J, Sato M, Yamagata Z (2008) Is maternal smoking during early pregnancy a risk factor for all low birth weight infants? J Epidemiol/Jpn Epidemiol Assoc 18(3):89–96CrossRefGoogle Scholar
  58. Svedin P, Hagberg H, Savman K, Zhu C, Mallard C (2007) Matrix metalloproteinase-9 gene knock-out protects the immature brain after cerebral hypoxia-ischemia. J Neurosci 27(7):1511–1518. doi:10.1523/JNEUROSCI.4391-06.2007 PubMedCrossRefGoogle Scholar
  59. Szklarczyk A, Lapinska J, Rylski M, McKay RD, Kaczmarek L (2002) Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. J Neurosci 22(3):920–930PubMedGoogle Scholar
  60. Teaktong T, Graham AJ, Johnson M, Court JA, Perry EK (2004) Selective changes in nicotinic acetylcholine receptor subtypes related to tobacco smoking: an immunohistochemical study. Neuropathol Appl Neurobiol 30(3):243–254. doi:10.1046/j.0305-1846.2003.00528.x PubMedCrossRefGoogle Scholar
  61. The Hippocampus Book (2006) Oxford University Press, OxfordGoogle Scholar
  62. Thompson LP, Liu H, Evans L, Mong JA (2011) Prenatal nicotine increases matrix metalloproteinase 2 (MMP-2) expression in fetal guinea pig hearts. Reprod Sci 18(11):1103–1110. doi:10.1177/1933719111404605 PubMedCrossRefGoogle Scholar
  63. Tong W, Chen W, Ostrowski RP, Ma Q, Souvenir R, Zhang L, Zhang JH, Tang J (2010) Maternal hypoxia increases the activity of MMPs and decreases the expression of TIMPs in the brain of neonatal rats. Dev Neurobiol 70(3):182–194. doi:10.1002/dneu.20770 PubMedGoogle Scholar
  64. Wang L, Cai R, Lv G, Huang Z, Wang Z (2010) Hypoxia during pregnancy in rats leads to the changes of the cerebral white matter in adult offspring. Biochem Biophys Res Commun 396(2):445–450. doi:10.1016/j.bbrc.2010.04.114 PubMedCrossRefGoogle Scholar
  65. Winzer-Serhan UH (2008) Long-term consequences of maternal smoking and developmental chronic nicotine exposure. Front Biosci 13:636–649PubMedCrossRefGoogle Scholar
  66. Wojcik L, Sawicka A, Rivera S, Zalewska T (2009) Neurogenesis in gerbil hippocampus following brain ischemia: focus on the involvement of metalloproteinases. Acta Neurobiol Exp 69(1):52–61Google Scholar
  67. Yin KJ, Cirrito JR, Yan P, Hu X, Xiao Q, Pan X, Bateman R, Song H, Hsu FF, Turk J, Xu J, Hsu CY, Mills JC, Holtzman DM, Lee JM (2006) Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J Neurosci 26(43):10939–10948. doi:10.1523/JNEUROSCI.2085-06.2006 PubMedCrossRefGoogle Scholar
  68. Yong VW (2005) Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci 6(12):931–944. doi:10.1038/nrn1807 PubMedCrossRefGoogle Scholar
  69. Zhang JW, Deb S, Gottschall PE (1998) Regional and differential expression of gelatinases in rat brain after systemic kainic acid or bicuculline administration. Eur J Neurosci 10(11):3358–3368PubMedCrossRefGoogle Scholar
  70. Zitka O, Kukacka J, Krizkova S, Huska D, Adam V, Masarik M, Prusa R, Kizek R (2010) Matrix metalloproteinases. Curr Med Chem 17(31):3751–3768PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Tamara Blutstein
    • 1
    • 2
    • 4
  • Michael A. Castello
    • 1
    • 5
  • Shaun S. Viechweg
    • 1
  • Maria M. Hadjimarkou
    • 1
  • Joseph A. McQuail
    • 1
  • Mary Holder
    • 1
  • Loren P. Thompson
    • 3
  • Jessica A. Mong
    • 1
    • 2
  1. 1.Department of PharmacologyUniversity of Maryland School of MedicineBaltimoreUSA
  2. 2.Program in NeuroscienceUniversity of Maryland School of MedicineBaltimoreUSA
  3. 3.Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of Maryland School of MedicineBaltimoreUSA
  4. 4.Department of NeuroscienceTufts University School of MedicineBostonUSA
  5. 5.School of Medicine, Loma Linda UniversityLoma LindaUSA

Personalised recommendations