Neurotoxicity Research

, Volume 23, Issue 1, pp 105–110 | Cite as

Docosahexaenoic Acid (DHA) Prevents Binge Ethanol-Dependent Aquaporin-4 Elevations While Inhibiting Neurodegeneration: Experiments in Rat Adult-Age Entorhino-Hippocampal Slice Cultures

  • Michael A. Collins
  • Kwan-Hoon Moon
  • Nuzhath Tajuddin
  • Edward J. Neafsey
  • Hee-Yong Kim
Short Report/Rapid Communication


Repetitive binge intoxication with ethanol (alcohol) in adult rats, mimicking chronic ethanol abuse in alcoholics, causes trauma-like brain edema and relatively selective neurodegeneration of hippocampal dentate granule cells and pyramidal neurons in the temporal cortex (especially entorhinal cortex). We have now modeled the aspects of this type of acquired brain damage in vitro with rat entorhino-hippocampal slice cultures of adult brain age (62 ± 3 days). When sequentially treated (four 16-h overnight exposures) with 100 mM ethanol, the slices display elevated levels of aquaporin-4 (AQP4) water channels accompanied by significant neurodegeneration. Increased AQP4 has been associated with neuroinflammatory responses including edema, pro-inflammatory cytokine elevations, arachidonic acid release, and oxidative stress. Co-treatment of ethanol-binged slice cultures with docosahexaenoic acid (DHA), an omega-3 fatty acid known to suppress brain damage from other insults, prevents both the AQP4 elevations and the neurodamage. Surmising that AQP4 augmentation is a causative neuroinflammatory component in this model, we are investigating several possibilities to explain the protective actions of the omega-3 fatty acid. Since the worldwide incidence of cognitive dysfunction and dementia from ethanol abuse and alcoholism is not inconsequential, DHA supplementation with chronic alcoholics could emerge to be a rational approach to potentially lessening brain disabilities.


Organotypic Neuroinflammation Omega-3 AQP4 Alcohol Neurodamage 



This research is supported by NIH NIAAA UO1 AA018279. Dr. Peter Bergold, Downstate Medical Center, Brooklyn, and Dr. Philip E. Bickler, UCSF, San Francisco, are acknowledged for helpful advice in the preparation of adult-age brain slices.


  1. Adachi J, Mizoi Y, Fukunaga T, Ogawa Y, Ueno Y, Imamichi H (1991) Degrees of alcohol intoxication in 117 hospitalized cases. J Stud Alcohol 52(5):448–453PubMedGoogle Scholar
  2. Allely P, Graham W, McDonnell M, Spedding R (2006) Alcohol levels in the emergency department: a worrying trend. Emerg Med J 23(9):707–708PubMedCrossRefGoogle Scholar
  3. Benardete EA, Bergold PJ (2009) Genomic analysis of ischemic preconditioning in adult rat hippocampal slice cultures. Brain Res 1292:107–122PubMedCrossRefGoogle Scholar
  4. Bickler PE, Fahlman CS, Gray JJ (2010) Hypoxic preconditioning failure in aging hippocampal neurons: impaired gene expression and rescue with intracellular calcium chelation. J Neurosci Res 88(16):3520–3529PubMedCrossRefGoogle Scholar
  5. Brown J 3rd, Achille N, Neafsey EJ, Collins MA (2009) Binge ethanol-induced neurodegeneration in rat organotypic brain slice cultures: effects of PLA2 inhibitor mepacrine and docosahexaenoic acid (DHA). Neurochem Res 34(2):260–267PubMedCrossRefGoogle Scholar
  6. Cao D, Xue R, Xu J, Liu Z (2005) Effects of docosahexaenoic acid on the survival and neurite outgrowth of rat cortical neurons in primary cultures. J Nutr Biochem 16(9):538–546PubMedCrossRefGoogle Scholar
  7. Collins MA, Neafsey EJ (2012a) Ethanol and adult CNS neurodamage: oxidative stress, but possibly not excitotoxicity. Front Biosci 4:1358–1367Google Scholar
  8. Collins MA, Neafsey EJ (2012b) Neuroinflammatory pathways in binge alcohol-induced neuronal degeneration: oxidative stress cascade involving aquaporin, brain edema, and phospholipase A2 activation. Neurotox Res 21(1):70–78PubMedCrossRefGoogle Scholar
  9. Collins MA, Corso TD, Neafsey EJ (1996) Neuronal degeneration in rat cerebrocortical and olfactory regions during subchronic “binge” intoxication with ethanol: possible explanation for olfactory deficits in alcoholics. Alcohol Clin Exp Res 20(2):284–292PubMedCrossRefGoogle Scholar
  10. Dyall SC, Michael GJ, Michael-Titus AT (2010) Omega-3 fatty acids reverse age-related decreases in nuclear receptors and increase neurogenesis in old rats. J Neurosci Res 88(10):2091–2102PubMedCrossRefGoogle Scholar
  11. Esposito G, Imitola J, Lu J, De Filippis D, Scuderi C, Ganesh VS, Folkerth R, Hecht J, Shin S, Iuvone T, Chesnut J, Steardo L, Sheen V (2008) Genomic and functional profiling of human Down syndrome neural progenitors implicates S100B and aquaporin 4 in cell injury. Hum Mol Genet 17(3):440–457PubMedCrossRefGoogle Scholar
  12. Gunnarson E, Zelenina M, Axehult G, Song Y, Bondar A, Krieger P, Brismar H, Zelenin S, Aperia A (2008) Identification of a molecular target for glutamate regulation of astrocyte water permeability. GLIA 56(6):587–596PubMedCrossRefGoogle Scholar
  13. Guo M, Stockert L, Akbar M, Kim HY (2007) Neuronal specific increase of phosphatidylserine by docosahexaenoic acid. J Mol Neurosci 33(1):67–73PubMedCrossRefGoogle Scholar
  14. Gupta S, Warner J (2008) Alcohol-related dementia: a 21st-century silent epidemic? Br J Psychiatry 193(5):351–353PubMedCrossRefGoogle Scholar
  15. Haorah J, Ramirez SH, Floreani N, Gorantla S, Morsey B, Persidsky Y (2008) Mechanism of alcohol-induced oxidative stress and neuronal injury. Free Radic Biol Med 45(11):1542–1550PubMedCrossRefGoogle Scholar
  16. Higashida T, Kreipke CW, Rafols JA, Peng C, Schafer S, Schafer P, Ding JY, Dornbos D III, Li X, Guthikonda M, Rossi NF, Ding Y (2011) The role of hypoxia-inducible factor-1alpha, aquaporin-4, and matrix metalloproteinase-9 in blood-brain barrier disruption and brain edema after traumatic brain injury. J Neurosurg 114(1):92–101PubMedCrossRefGoogle Scholar
  17. Huang H, Jones MV, Levy M (2012) Effects of TNF-alpha and interleukin-6 on the expression of aquaporin-4 in astrocytes. Abst Society for Neuroscience: #189.108Google Scholar
  18. Ito H, Yamamoto N, Arima H, Hirate H, Morishima T, Umenishi F, Tada T, Asai K, Katsuya H, Sobue K (2006) Interleukin-1beta induces the expression of aquaporin-4 through a nuclear factor-kappaB pathway in rat astrocytes. J Neurochem 99(1):107–118PubMedCrossRefGoogle Scholar
  19. Jones AW (1999) The drunkest drinking driver in Sweden: blood alcohol concentration 0.545% w/v. J Stud Alcohol 60(3):400–406PubMedGoogle Scholar
  20. Kim HY, Akbar M, Kim YS (2010) Phosphatidylserine-dependent neuroprotective signaling promoted by docosahexaenoic acid. Prostaglandins Leukot Essent Fatty Acids 82(4–6):165–172PubMedCrossRefGoogle Scholar
  21. Knapp DJ, Crews FT (1999) Induction of cyclooxygenase-2 in brain during acute and chronic ethanol treatment and ethanol withdrawal. Alcohol Clin Exp Res 23(4):633–643PubMedCrossRefGoogle Scholar
  22. Li L, Zhang H, Varrin-Doyer M, Zamvil SS, Verkman AS (2011) Proinflammatory role of aquaporin-4 in autoimmune neuroinflammation. FASEB J 25(5):1556–1566PubMedCrossRefGoogle Scholar
  23. Liu SH, Chang CD, Chen PH, Su JR, Chen CC, Chaung HC (2012) Docosahexaenoic acid and phosphatidylserine supplementations improve antioxidant activities and cognitive functions of the developing brain on pentylenetetrazol-induced seizure model. Brain Res 1451:19–26PubMedCrossRefGoogle Scholar
  24. Morishima T, Aoyama M, Iida Y, Yamamoto N, Hirate H, Arima H, Fujita Y, Sasano H, Tsuda T, Katsuya H, Asai K, Sobue K (2008) Lactic acid increases aquaporin 4 expression on the cell membrane of cultured rat astrocytes. Neurosci Res 61(1):18–26PubMedCrossRefGoogle Scholar
  25. Pascual M, Balino P, Alfonso-Loeches S, Aragon CM, Guerri C (2011) Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage. Brain Behav Immun 25(Suppl 1):S80–S91PubMedCrossRefGoogle Scholar
  26. Ramos GC, Fernandes D, Charao CT, Souza DG, Teixeira MM, Assreuy J (2007) Apoptotic mimicry: phosphatidylserine liposomes reduce inflammation through activation of peroxisome proliferator-activated receptors (PPARs) in vivo. Br J Pharmacol 151(6):844–850PubMedCrossRefGoogle Scholar
  27. Rao KV, Reddy PV, Curtis KM, Norenberg MD (2011) Aquaporin-4 expression in cultured astrocytes after fluid percussion injury. J Neurotrauma 28(3):371–381PubMedCrossRefGoogle Scholar
  28. Satoh J, Tabunoki H, Yamamura T, Arima K, Konno H (2007) Human astrocytes express aquaporin-1 and aquaporin-4 in vitro and in vivo. Neuropathology 27(3):245–256PubMedCrossRefGoogle Scholar
  29. Semple BD, Noble-Haeusslein LJ (2011) Broad-spectrum neuroprotection against traumatic brain injury by agonism of peroxisome proliferator-activated receptors. Exp Neurol 229(2):195–197PubMedCrossRefGoogle Scholar
  30. Sripathirathan K, Brown J, Neafsey EJ, Collins MA (2009) Linking binge alcohol-induced neurodamage to brain edema and potential aquaporin-4 upregulation: evidence in rat organotypic brain slice cultures and in vivo. J Neurotrauma 26(2):261–273PubMedCrossRefGoogle Scholar
  31. Switzer RC, Majchrowicz E, Weight F (1982) Ethanol-induced argyrophilia in entorhinal cortex of rat. Anat Rec 202:186AGoogle Scholar
  32. Tomas-Camardiel M, Venero JL, de Pablos RM, Rite I, Machado A, Cano J (2004) In vivo expression of aquaporin-4 by reactive microglia. J Neurochem 91(4):891–899PubMedCrossRefGoogle Scholar
  33. Verkman AS (2005) Novel roles of aquaporins revealed by phenotype analysis of knockout mice. Rev Physiol Biochem Pharmacol 155:31–55PubMedCrossRefGoogle Scholar
  34. Zador Z, Stiver S, Wang V, Manley GT (2009) Role of aquaporin-4 in cerebral edema and stroke. Handb Exp Pharmacol 190:159–170PubMedCrossRefGoogle Scholar
  35. Zhao Y, Calon F, Julien C, Winkler JW, Petasis NA, Lukiw WJ, Bazan NG (2011) Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARgamma-mediated mechanisms in Alzheimer’s disease models. PLoS ONE 6(1):e15816PubMedCrossRefGoogle Scholar
  36. Zou J, Crews F (2010) Induction of innate immune gene expression cascades in brain slice cultures by ethanol: key role of NF-kappaB and proinflammatory cytokines. Alcohol Clin Exp Res 34(5):777–789PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Michael A. Collins
    • 2
  • Kwan-Hoon Moon
    • 2
  • Nuzhath Tajuddin
    • 2
  • Edward J. Neafsey
    • 2
  • Hee-Yong Kim
    • 1
  1. 1.Laboratory of Molecular SignalingNational Institute of Alcohol Abuse and Alcoholism, NIHBethesdaUSA
  2. 2.Department of Molecular Pharmacology & TherapeuticsLoyola University Chicago Stritch School of MedicineMaywoodUSA

Personalised recommendations