Neurotoxicity Research

, Volume 23, Issue 4, pp 393–400

Excitotoxicity in the Pathogenesis of Autism

  • M. M. Essa
  • N. Braidy
  • K. R. Vijayan
  • S. Subash
  • G. J. Guillemin
Review Article

Abstract

Autism is a debilitating neurodevelopment disorder characterised by stereotyped interests and behaviours, and abnormalities in verbal and non-verbal communication. It is a multifactorial disorder resulting from interactions between genetic, environmental and immunological factors. Excitotoxicity and oxidative stress are potential mechanisms, which are likely to serve as a converging point to these risk factors. Substantial evidence suggests that excitotoxicity, oxidative stress and impaired mitochondrial function are the leading cause of neuronal dysfunction in autistic patients. Glutamate is the primary excitatory neurotransmitter produced in the CNS, and overactivity of glutamate and its receptors leads to excitotoxicity. The over excitatory action of glutamate, and the glutamatergic receptors NMDA and AMPA, leads to activation of enzymes that damage cellular structure, membrane permeability and electrochemical gradients. The role of excitotoxicity and the mechanism behind its action in autistic subjects is delineated in this review.

Keywords

Autism Excitotoxicity Glutamatergic receptors Membrane potential Neurotransmitter Ion channel Free radicals 

References

  1. Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, Bernasconi L, Bernard A, Mermod JJ, Mazzei G, Maundrell K, Gambale F, Sadoul R, Martinou JC (1997) Inhibition of Bax channel-forming activity by Bcl-2. Science 277:370–372CrossRefPubMedGoogle Scholar
  2. Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34:325–337CrossRefPubMedGoogle Scholar
  3. Ashcroft FM (2006) From molecule to malady. Nature 440:440–447CrossRefPubMedGoogle Scholar
  4. Babu GN, Bawari M, Ali MM (1994) Lipid peroxidation potential and antioxidant status of circumventricular Organs of rat brain following neonatal monosodium glutamate. Neurotoxicology 15:773–777PubMedGoogle Scholar
  5. Baker PF, Naughton MC (1976) Kinetics and energetics of calcium efflux from intact squid giant axons. J Physiol 259:103–144PubMedGoogle Scholar
  6. Blaylock RL (2003) The central role of excitotoxicity in autism spectrum disorders. J Am Nutraceut Assoc 6:7–19Google Scholar
  7. Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 92:7162–7166CrossRefPubMedGoogle Scholar
  8. Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–125CrossRefPubMedGoogle Scholar
  9. Caldeira MV, Melo CV, Pereira DB, Carvalho RF, Carvalho AL, Duarte CB (2007) BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Mol Cell Neurosci 35:208–219CrossRefPubMedGoogle Scholar
  10. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International union of pharmacology. XLVIII. Nomenclature and structure–function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425CrossRefPubMedGoogle Scholar
  11. Centers for Disease Control and Prevention (2009) Autism information center. http://www.cdc.gov/ncbddd/autism/faq_prevalence.htm. Accessed 27 May 2009
  12. Chez MG, Burton Q, Dowling T, Chang M, Khanna P, Kramer C (2007) Memantine as adjunctive therapy in children diagnosed with autistic spectrum disorders: an observation of initial clinical response and maintenance tolerability. J Child Neurol 22(5):574–579CrossRefPubMedGoogle Scholar
  13. Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7:369–379PubMedGoogle Scholar
  14. Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634CrossRefPubMedGoogle Scholar
  15. Cohly HH, Panja A (2005) Immunological findings in autism. Int Rev Neurobiol 71:317–341CrossRefPubMedGoogle Scholar
  16. Damme PV, Bogaert E, Dewil M, Hersmus N, Kiraly D, Scheveneels W, Bockx I, Braeken D, Verpoorten N, Verhoeven K, Timmerman V, Herijgers P, Callewaert G, Carmeliet P, Den Bosch LV, Robberecht W (2007) Astrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity. Proc Natl Acad Sci USA 104:14825–14830Google Scholar
  17. Deth R et al (2008) How environmental and genetic factors combine to cause autism: a redox/methylation hypothesis. Neurotoxicology 29:190–201CrossRefPubMedGoogle Scholar
  18. Dolmetsch RE, Pajvani U, Fife K, Spotts JM, Greenberg ME (2001) Signaling to the nucleus by an L-type calcium channel calmodulin complex through the MAP kinase pathway. Science 294:333–339CrossRefPubMedGoogle Scholar
  19. Eliasson MJ, Huang Z, Ferrante RJ (1999) Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. J Neurosci 19:59105918Google Scholar
  20. Ernfors P, Lee KF, Jaenisch R (1994) Mice lacking brain derived neurotrophic factor develop with sensory deficits. Nature 368:147–150CrossRefPubMedGoogle Scholar
  21. Espey MG, Kustova Y, Sei Y, Basile AS (1998) Extracellular glutamate levels are chronically elevated in the brains of LPBM5-infected mice: a mechanism of retrovirus-induced encephalopathy. J Neurochem 71:2079–2087CrossRefPubMedGoogle Scholar
  22. Farber NB, Newcomer JW, Olney JW (1998) The glutamate synapse in neuropsychiatric disorders. Focus on schizophrenia and Alzheimer’s disease. Prog Brain Res 116:421–437CrossRefPubMedGoogle Scholar
  23. Farooqui AA, Horrocks LA (1994) Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int Rev Neurobiol 36:267–323CrossRefPubMedGoogle Scholar
  24. Fatemi SH, Halt AR, Stary JM, Kanodia R, Schulz SC, Realmuto GR (2002) Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry 52:805–810CrossRefPubMedGoogle Scholar
  25. Fontana A, Constam D, Frei K, Koedel U, Pfister W, Weller M (1996) Cytokines and defense against CNS infection. In: Ransohoff RM, Beneviste EN (eds) Cytokines and the CNS. CRC Press, Boca Raton, pp 187–220Google Scholar
  26. Fosslier E (2001) Mitochondrial medicine-molecular pathology of defective oxidative phosphorylation. Ann Clin Lab Sci 31:25–67Google Scholar
  27. Gillberg C, Coleman M (2000) The biology of autistic syndromes, 3rd edn. Mac Keith, London (distributed by Cambridge University Press)Google Scholar
  28. Goldberg MP, Choi DW (1993) Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci 13:3510–3524PubMedGoogle Scholar
  29. Gottmann K, Mittmann T, Lessmann (2009) BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses. Exp Brain Res 199:203–234CrossRefPubMedGoogle Scholar
  30. Henneberry RC (1989) The role of neuronal energy in neurotoxicity of excitatory amino acids. Neurobiol Aging 10:611613CrossRefGoogle Scholar
  31. Hu S, Sheng WS, Ehrlich LC, Peterson PK, Chao CC (2000) Cytokine effects on glutamate uptake by human astrocytes. NeuroImmunoModulation 7:153–159CrossRefPubMedGoogle Scholar
  32. Inoue H, Okada Y (2007) Roles of volume-sensitive chloride channel in excitotoxic neuronal injury. J Neurosci 27(6):1445–1455CrossRefPubMedGoogle Scholar
  33. Isackson PJ, Huntsman MM, Murray KD, Gall CM (1991) BDNF mRNA expression is increased in adult rat forebrain after limbic seizures: temporal patterns of induction distinct from NGF. Neuron 6:937–948CrossRefPubMedGoogle Scholar
  34. Jeffs GF, Meloni BP, Bakker AJ, Knuckey NW (2007) The role of the Na(+)/Ca(2+) exchanger (NCX) in neurons following ischemia. J Clin Neurosci 14:507–514CrossRefPubMedGoogle Scholar
  35. Johnston MV (1995) Neurotransmitters and vulnerability of the developing brain. Brain Dev 17:301–306CrossRefPubMedGoogle Scholar
  36. Keller F, Persico AM (2003) The neurobiological context of autism. Mol Neurobiol 28:1–22CrossRefPubMedGoogle Scholar
  37. Kokaia M, Ernfors P, Kokaia Z, Elmer E, Jaenisch R, Lindvall O (1995) Suppressed epileptogenesis in BDNF mutant mice. Exp Neurol 133:215–224CrossRefPubMedGoogle Scholar
  38. Korvatska E, Van de Water J, Anders TF, Gershwin ME (2002) Genetic and immunologic considerations in autism. Neurobiol Dis 9:107–125CrossRefPubMedGoogle Scholar
  39. Koyama R, Yamada MK, Fujisawa S, Katoh-Semba R, Matsuki N, Ikegaya Y (2004) Brain-derived neurotrophic factor induces hyperexcitable reentrant circuits in the dentate gyrus. J Neurosci 24:7215–7224CrossRefPubMedGoogle Scholar
  40. Kramar EA, Chen LY, Lauterborn JC, Simmons DA, Gall CM, Lynch G (2010) BDNF upregulation rescues synaptic plasticity in middle-aged ovariectomized rats. Neurobiol Aging 33(4):708–719CrossRefPubMedGoogle Scholar
  41. Lahteinen S, Pitkanen A, Saarelainen T, Nissinen J, Koponen E, Castren E (2002) Decreased BDNF signalling in transgenic mice reduces epileptogenesis. Eur J Neurosci 15:721–734CrossRefPubMedGoogle Scholar
  42. Lamb JA, Moore J, Bailey A, Monaco AP (2000) Autism: recent molecular genetic advances. Hum Mol Genet 9:861–868CrossRefPubMedGoogle Scholar
  43. Lan JY, Skeberdis VA, Jover T, Grooms SY, Lin Y, Araneda RC, Zheng X, Bennett MV, Zukin RS (2001) Protein kinase C modulates NMDA receptor trafficking and gating. Nat Neurosci 4:382–390CrossRefPubMedGoogle Scholar
  44. Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch Eur J Physiol 460:525–542CrossRefGoogle Scholar
  45. Laumonnier F, Roger S, Guerin P, Molinari F, M’Rad R, Cahard D, Belhadj A, Halayem M, Persico AM, Elia M et al (2006) Association of a functional deficit of the BKCa channel, a synaptic regulator of neuronal excitability, with autism and mental retardation. Am J Psychiatry 163:1622–1629CrossRefPubMedGoogle Scholar
  46. Lawson K (1996) Potassium channel activation: a potential therapeutic approach? Pharmacol Ther 70:39–63CrossRefPubMedGoogle Scholar
  47. Lawson K (2000) Potassium channel openers as potential therapeutic weapons in ion channel disease. Kidney Int 57:838–845CrossRefPubMedGoogle Scholar
  48. Lees KR (1998) Does neuroprotection improve stroke outcome? Lancet 351:1447–1448CrossRefPubMedGoogle Scholar
  49. Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330:613–622CrossRefPubMedGoogle Scholar
  50. Lord C, Cook EH, Leventhal BL, Amaral DG (2000) Autism spectrum disorders. Neuron 28:355–363CrossRefPubMedGoogle Scholar
  51. Madara JC, Levine ES (2008) Presynaptic and postsynaptic NMDA receptors mediate distinct effects of brain-derived neurotrophic factor on synaptic transmission. J Neurophysiol 100(6):3175–3184CrossRefPubMedGoogle Scholar
  52. Mattson MP, Fu W, Waeg G, Uchida K (1997) 4-hydroxynonenal, a product of lipid peroxidation, inhibits dephosphorylation of the microtubule-associated protein tau. Neuroreport 8:2275–2281CrossRefPubMedGoogle Scholar
  53. Mrak RE, Sheng JG, Griffin ST (1995) Glial cytokines in Alzheimer’s disease. Human Pathol 26:816–823CrossRefGoogle Scholar
  54. Novelli A, Reilly JA, Lysko PG, Henneberry RC (1988) Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 451:205–212CrossRefPubMedGoogle Scholar
  55. O’Banion MK (1999) Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology. Critical Rev Neurobiol 13:4582Google Scholar
  56. Olney JW (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 165:719721Google Scholar
  57. Pencea V, Bingaman VKD, Wiegand SJ, Luskin MB (2001) Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci 21:6706–6717PubMedGoogle Scholar
  58. Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83:117–161PubMedGoogle Scholar
  59. Portera-Cailliau C, Price DL, Martin LJ (1997) Non-NMDA and NMDA receptor-mediated excitotoxic neuronal deaths in adult brain are morphologically distinct: further evidence for an apoptosis-necrosis continuum. J Comp Neurol 378:88–104CrossRefPubMedGoogle Scholar
  60. Robbins J (2001) KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Pharmacol Ther 90:1–19CrossRefPubMedGoogle Scholar
  61. Rogawski MA (1995) Excitatory amino acids and seizures. In: Stone TW (ed) CNS neurotransmitters and neuromodulators: glutamate. CRC Press, Boca Raton, pp 219–237Google Scholar
  62. Saito K, Markey SP, Heyes MP (1992) Effects of immune activation on quinolinic acid and neuroactive kynurenines in the mouse. Neuroscience 51:25–39CrossRefPubMedGoogle Scholar
  63. Sattler R, Tymianski M (2000) Molecular mechanisms of calcium dependent excitotoxicity (in process citation). J Mol Med 78:3–13CrossRefPubMedGoogle Scholar
  64. Sattler S, Charlton MP, Hafner M, Tymianski M (1998) Distinct influx pathways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity. J Neurochem 71:2349–2364CrossRefPubMedGoogle Scholar
  65. Seal RP, Amara SG (1999) Excitatory amino acid transporters: a family in flux. Ann Rev Pharmacol Toxicol 39:431–456CrossRefGoogle Scholar
  66. Scharfman HE (2005) Brain-derived neurotrophic factor and epilepsy—a missing link? Epilepsy Curr 5:83–88CrossRefPubMedGoogle Scholar
  67. Shigeri Y, Seal RP, Shimamoto K (2004) Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res Rev 45:250–265CrossRefPubMedGoogle Scholar
  68. Shinohe A, Hashimoto K, Nakamura K, Tsujii M, Iwata Y, Tsuchiya KJ, Sekine Y, Suda S, Suzuki K, Sugihara G, Matsuzaki H, Minabe Y, Sugiyama T, Kawai M, Iyo M, Takei N, Mori N (2006) Increased serum levels of glutamate in adult patients with autism. Prog Neuropsychopharmacol Biol Psychiatry 30(8):1472–1477CrossRefPubMedGoogle Scholar
  69. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K et al (2004) Ca1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119:19–31CrossRefPubMedGoogle Scholar
  70. Splawski I, Timothy KW, Decher N, Kumar P, Sachse FB, Beggs AH, Sanguinetti MC, Keating MT (2005) Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci USA 102:8089–8096CrossRefPubMedGoogle Scholar
  71. Splawski I, Yoo DS, Stotz SC, Cherry A, Clapham DE, Keating MT (2006) CACNA1H mutations in autism spectrum disorders. J Biol Chem 281:22085–22091CrossRefPubMedGoogle Scholar
  72. Starrett JE, Dworetzky SI, Gribkoff VK (1996) Modulators of large-conductance calcium-activated potassium channels as potential therapeutic targets. Curr Pharm Design 2:413–428Google Scholar
  73. Tuchman R (2003) Autism. Neurol Clin 21(4):915–932CrossRefPubMedGoogle Scholar
  74. Tymianski M, Tator CH (1996) Normal and abnormal calcium homeostasis in neurons: a basis for the pathophysiology of traumatic and ischemic central nervous system injury. Neurosurgery 38:1176–1195PubMedGoogle Scholar
  75. Tymianski M, Charlton MP, Carlen PL, Tator CH (1993) Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J Neurosci 13:2085–2104PubMedGoogle Scholar
  76. Vander Jagt DL, Hunsaker LA, Vander Jagt TJ, Gomez MS, Gonzales DM, Deck LM, Royer RE (1997) Inactivation of glutathione reductase by 4-hydroxynonenal and other endogenous aldehydes. Biochem Pharmacol 53:1133–1140CrossRefGoogle Scholar
  77. Volkmar FR, Pauls D (2003) Autism. Lancet 362(9390):1133–1141CrossRefPubMedGoogle Scholar
  78. Walz C, Jüngling K, Lessmann V, Gottmann K (2006) Presynaptic plasticity in an immature neocortical network requires NMDA receptor activation and BDNF release. J Neurophysiol 96:3512–3516CrossRefPubMedGoogle Scholar
  79. Weiss LA, Escayg A, Kearney JA, Trudeau M, MacDonald BT, Mori M, Reichert J, Buxbaum JD, Meisler MH (2003) Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Mol Psychiatry 8:186–194CrossRefPubMedGoogle Scholar
  80. White RJ, Reynolds IJ (1995) Mitochondria and Na/Ca 2+ exchange buffer glutamate induced calcium loads in cultured cortical neurons. J Neurosci 15:1318–1328PubMedGoogle Scholar
  81. Xu B, Gottschalk W, Chow A et al (2000) The role of brain derived neurotrophic factor receptors in the mature hippocampus: modulation of long-term potentiation through a presynaptic mechanism involving trkB. J Neurosci 20:6888–6897PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • M. M. Essa
    • 1
    • 2
  • N. Braidy
    • 3
  • K. R. Vijayan
    • 1
  • S. Subash
    • 1
  • G. J. Guillemin
    • 2
    • 4
  1. 1.Department of Food Science and NutritionCollege of Agriculture and Marine Sciences, Sultan Qaboos UniversityMuscatOman
  2. 2.Department of PharmacologyFaculty of Medicine, School of Medical Sciences, University of NSWSydneyAustralia
  3. 3.Faculty of Medicine, School of Psychiatry, University of New South WalesSydneyAustralia
  4. 4.Peter Duncan Neuroscience unitSt Vincent’s Centre for Applied Medical Research, St Vincent’s HospitalSydneyAustralia

Personalised recommendations