Neurotoxicity Research

, Volume 23, Issue 1, pp 22–38 | Cite as

Seafood Consumption and Blood Mercury Concentrations in Jamaican Children With and Without Autism Spectrum Disorders

  • Mohammad H. Rahbar
  • Maureen Samms-Vaughan
  • Katherine A. Loveland
  • Manouchehr Ardjomand-Hessabi
  • Zhongxue Chen
  • Jan Bressler
  • Sydonnie Shakespeare-Pellington
  • Megan L. Grove
  • Kari Bloom
  • Deborah A. Pearson
  • Gerald C. Lalor
  • Eric Boerwinkle
Article

Abstract

Mercury is a toxic metal shown to have harmful effects on human health. Several studies have reported high blood mercury concentrations as a risk factor for autism spectrum disorders (ASDs), while other studies have reported no such association. The goal of this study was to investigate the association between blood mercury concentrations in children and ASDs. Moreover, we investigated the role of seafood consumption in relation to blood mercury concentrations in Jamaican children. Based on data for 65 sex- and age-matched pairs (2–8 years), we used a General Linear Model to test whether there is an association between blood mercury concentrations and ASDs. After controlling for the child’s frequency of seafood consumption, maternal age, and parental education, we did not find a significant difference (P = 0.61) between blood mercury concentrations and ASDs. However, in both cases and control groups, children who ate certain types of seafood (i.e., salt water fish, sardine, or mackerel fish) had significantly higher (all P < 0.05) geometric means blood mercury concentration which were about 3.5 times that of children living in the US or Canada. Our findings also indicate that Jamaican children with parents who both had education up to high school are at a higher risk of exposure to mercury compared to children with at least one parent who had education beyond high school. Based on our findings, we recommend additional education to Jamaican parents regarding potential hazards of elevated blood mercury concentrations, and its association with seafood consumption and type of seafood.

Keywords

Autism spectrum disorders Blood mercury concentrations Seafood consumption Confounding Parental education Jamaica 

Notes

Acknowledgments

This research is co-funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and the National Institutes of Health Fogarty International Center (NIH-FIC) by a grant [R21HD057808] awarded to the University of Texas Health Science Center at Houston (UTHealth). We also acknowledge the support provided by the Biostatistics/Epidemiology/Research Design (BERD) component of the Center for Clinical and Translational Sciences (CCTS) for this project. CCTS is mainly funded by the NIH Centers for Translational Science Award (NIH CTSA) Grant (UL1 RR024148), awarded to the University of Texas Health Science Center at Houston in 2006 by the National Center for Research Resources (NCRR). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NICHD or the NIH-FIC or the NCRR. Finally, we acknowledge contributions by colleagues in the Trace Metals Lab at the department of Michigan Department of Community Health (MDCH) for analyzing and storing the blood samples for mercury concentrations.

References

  1. Adams JB, Romdalvik J, Ramanujam VM, Legator MS (2007) Mercury, lead, and zinc in baby teeth of children with autism versus controls. J Toxicol Environm Health A 70(12):1046–1051. doi: 10.1080/15287390601172080 CrossRefGoogle Scholar
  2. Agency for Toxic Substances and Disease Registry (1999) Toxicological profile for mercury. Retrieved from http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=115&tid=24
  3. American Psychiatric Association (2000) Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition Text Revision (DSM-IV-TR). American Psychiatric Publishing, Inc, Washington, DCCrossRefGoogle Scholar
  4. Aschner M (2008) Response to article by DeSoto and Hitlan on the relationship between mercury exposure and autism. J Child Neurol 23(4):463PubMedCrossRefGoogle Scholar
  5. Autism and Developmental Disabilities Monitoring Network Surveillance Year 2006 Principal Investigators, Centers for Disease Control and Prevention (2009) Prevalence of autism spectrum disorders—autism and developmental disabilities monitoring network, United States, 2006. MMWR Surveill Summ 58(SS-10):1–24Google Scholar
  6. Axtell CD, Cox C, Myers GJ, Davidson PW, Choi AL, Cernichiari E et al (2000) Association between methylmercury exposure from fish consumption and child development at five and a half years of age in the Seychelles Child Development Study: an evaluation of nonlinear relationships. Environ Res 84(2):71–80. doi: 10.1006/enrs.2000.4082 PubMedCrossRefGoogle Scholar
  7. Berglund M, Lind B, Bjornberg KA, Palm B, Einarsson O, Vahter M (2005) Inter-individual variations of human mercury exposure biomarkers: a cross-sectional assessment. Environ Health 4:20. doi: 10.1186/1476-069X-4-20 PubMedCrossRefGoogle Scholar
  8. Bilder D, Pinborough-Zimmerman J, Miller J, McMahon W (2009) Prenatal, perinatal, and neonatal factors associated with autism spectrum disorders. Pediatrics 123(5):1293–1300. doi: 10.1542/peds.2008-0927 PubMedCrossRefGoogle Scholar
  9. Blaxill MF, Baskin DS, Spitzer WO (2003) Commentary: Blaxill, Baskin, and Spitzer on Croen et al. (2002), the changing prevalence of autism in California. J Autism Dev Disord 33(2):223–226PubMedCrossRefGoogle Scholar
  10. Bose-O’Reilly S, McCarty KM, Steckling N, Lettmeier B (2010) Mercury exposure and children’s health. Curr Probl Pediatr Adolesc Health Care 40(8):186–215. doi: 10.1016/j.cppeds.2010.07.002 PubMedCrossRefGoogle Scholar
  11. Chakrabarti S, Fombonne E (2005) Pervasive developmental disorders in preschool children: confirmation of high prevalence. Am J Psychiatry 162(6):1133–1141PubMedCrossRefGoogle Scholar
  12. Chen WY, Wang YC, Kuo MS (2002) Determination of total mercury and methylmercury in human hair by graphite-furnace atomic absorption spectrophotometry using 2,3-dimercaptopropane-1-sulfonate as a complexing agent. Anal Sci 18(3):255–260PubMedCrossRefGoogle Scholar
  13. Chess S, Fernandez P, Korn S (1978) Behavioral consequences of congenital rubella. J Pediatr 93(4):699–703PubMedCrossRefGoogle Scholar
  14. Christianson AL, Chesler N, Kromberg JG (1994) Fetal valproate syndrome: clinical and neuro-developmental features in two sibling pairs. Dev Med Child Neurol 36(4):361–369PubMedCrossRefGoogle Scholar
  15. Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury–current exposures and clinical manifestations. New Engl J Med 349(18):1731–1737. doi: 10.1056/NEJMra02247 PubMedCrossRefGoogle Scholar
  16. Counter SA, Buchanan LH (2004) Mercury exposure in children: a review. Toxicol Appl Pharmacol 198(2):209–230. doi: 10.1016/j.taap.2003.11.032 PubMedCrossRefGoogle Scholar
  17. Counter SA, Buchanan LH, Ortega F, Laurell G (2002) Elevated blood mercury and neuro-otological observations in children of the Ecuadorian gold mines. J Toxicol Environm Health A 65(2):149–163. doi: 10.1080/152873902753396785 CrossRefGoogle Scholar
  18. Crespo-Lopez ME, de Lima SA, Herculano AM, Rodriguez BR, Martins do Nascimento JL (2007) Methylmercury genotoxicity: a novel effect in human cell lines of the central nervous system. Environ Int 33(2):141–146. doi: 10.1016/j.envint.2006.08.005 PubMedCrossRefGoogle Scholar
  19. Croen LA, Grether JK, Hoogstrate J, Selvin S (2002a) The changing prevalence of autism in California. J Autism Dev Disord 32(3):207–215PubMedCrossRefGoogle Scholar
  20. Croen LA, Grether JK, Selvin S (2002b) Descriptive epidemiology of autism in a California population: Who is at risk? J Autism Dev Disord 32(3):217–224. doi: 10.1023/A:1015405914950 PubMedCrossRefGoogle Scholar
  21. D’Amelio M, Ricci I, Sacco R, Liu X, D’Agruma L, Muscarella LA et al (2005) Paraoxonase gene variants are associated with autism in North America, but not in Italy: possible regional specificity in gene–environment interactions. Mol Psychiatry 10(11):1006–1016. doi: 10.1038/sj.mp.4001714 PubMedCrossRefGoogle Scholar
  22. Davidson PW, Myers GJ, Cox C, Axtell C, Shamlaye C, Sloane-Reeves J et al (1998) Effects of prenatal and postnatal methylmercury exposure from fish consumption on neurodevelopment: outcomes at 66 months of age in the Seychelles Child Development Study. JAMA 280(8):701–707PubMedCrossRefGoogle Scholar
  23. Davidson PW, Cory-Slechta DA, Thurston SW, Huang LS, Shamlaye CF, Gunzler D et al (2011) Fish consumption and prenatal methylmercury exposure: cognitive and behavioral outcomes in the main cohort at 17 years from the Seychelles child development study. Neurotoxicology 32(6):711–717. doi: 10.1016/j.neuro.2011.08.003 PubMedCrossRefGoogle Scholar
  24. Debes F, Budtz-Jorgensen E, Weihe P, White RF, Grandjean P (2006) Impact of prenatal methylmercury exposure on neurobehavioral function at age 14 years. Neurotoxicol Teratol 28(3):363–375. doi: 10.1016/j.ntt.2006.02.004 PubMedCrossRefGoogle Scholar
  25. DeSoto MC, Hitlan RT (2007) Blood levels of mercury are related to diagnosis of autism: a reanalysis of an important data set. J Child Neurol 22(11):1308–1311PubMedCrossRefGoogle Scholar
  26. DeSoto MC, Hitlan RT (2008) Concerning blood mercury levels and autism: a need to clarify. J Child Neurol 23(4):46a–463CrossRefGoogle Scholar
  27. Diez S, Delgado S, Aguilera I, Astray J, Perez-Gomez B, Torrent M et al (2009) Prenatal and early childhood exposure to mercury and methylmercury in Spain, a high-fish-consumer country. Arch Environ Contam Toxicol 56(3):615–622. doi: 10.1007/s00244-008-9213-7 PubMedCrossRefGoogle Scholar
  28. Dixon DR, Garcia MJ, Granpeesheh D, Tarbox J (2009) Differential diagnosis in autism spectrum disorders. In: Matson JL (ed) Applied behavior analysis for children with autism spectrum disorders. Springer, New York, pp 83–108CrossRefGoogle Scholar
  29. Dorea JG (2006) Fish meal in animal feed and human exposure to persistent bioaccumulative and toxic substances. J Food Prot 69(11):2777–2785PubMedGoogle Scholar
  30. Dorea JG (2008) Persistent, bioaccumulative and toxic substances in fish: human health considerations. Sci Total Environ 400(1–3):93–114. doi: 10.1016/j.scitotenv.2008.06.017 PubMedCrossRefGoogle Scholar
  31. Dorea JG (2009) Studies of fish consumption as source of methylmercury should consider fish-meal-fed farmed fish and other animal foods. Environ Res 109(1):131–132. doi: 10.1016/j.envres.2008.10.004 PubMedCrossRefGoogle Scholar
  32. Durkin MS, Maenner MJ, Newschaffer CJ, Lee LC, Cunniff CM, Daniels JL et al (2008) Advanced parental age and the risk of autism spectrum disorder. Am J Epidemiol 168(11):1268–1276. doi: 10.1093/aje/kwn250 PubMedCrossRefGoogle Scholar
  33. FDA (2010) Thimerosal in vaccines. In: Food and drug administration. Retrieved from http://www.fda.gov/BiologicsBloodVaccines/SafetyAvailability/VaccineSafety/UCM096228#t1
  34. FDA (2011) Mercury levels in commercial fish and shellfish (1990–2010). In: Food and drug administration. Retrieved from http://www.fda.gov/food/foodsafety/product-specificinformation/seafood/foodbornepathogenscontaminants/methylmercury/ucm115644.htm
  35. Fedorova I, Salem N Jr (2006) Omega-3 fatty acids and rodent behavior. Prostaglandins Leukot Essent Fatty Acids 75(4–5):271–289. doi: 10.1016/j.plefa.2006.07.006 PubMedCrossRefGoogle Scholar
  36. Fido A, Al-Saad S (2005) Toxic trace elements in the hair of children with autism. Autism 9(3):290–298PubMedCrossRefGoogle Scholar
  37. Folstein SE, Rosen-Sheidley B (2001) Genetics of autism: complex aetiology for a heterogeneous disorder. Nat Rev Genet 2(12):943–955. doi: 10.1038/35103559 PubMedCrossRefGoogle Scholar
  38. Food Standards Australia New Zealand (2011) Mercury in fish. Retrieved from http://www.foodstandards.gov.au/consumerinformation/mercuryinfish.cfm
  39. Freire C, Ramos R, Lopez-Espinosa MJ, Diez S, Vioque J, Ballester F et al (2010) Hair mercury levels, fish consumption, and cognitive development in preschool children from Granada, Spain. Environ Res 110(1):96–104. doi: 10.1016/j.envres.2009.10.005 PubMedCrossRefGoogle Scholar
  40. Gardener H, Spiegelman D, Buka SL (2011) Perinatal and neonatal risk factors for autism: a comprehensive meta-analysis. Pediatrics 128(2):344–355. doi: 10.1542/peds.2010-1036 PubMedCrossRefGoogle Scholar
  41. Genuis SJ (2009) Is autism reversible? Acta Paediatr 98(10):1575–1578. doi: 10.1111/j.1651-2227.2009.01495.x PubMedCrossRefGoogle Scholar
  42. Ginsberg GL, Toal BF (2009) Quantitative approach for incorporating methylmercury risks and omega-3 fatty acid benefits in developing species-specific fish consumption advice. Environ Health Perspect 117(2):267–275. doi: 10.1289/ehp.11368 PubMedGoogle Scholar
  43. Grandjean P, Weihe P, White RF, Debes F, Araki S, Yokoyama K et al (1997) Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol 19(6):417–428PubMedCrossRefGoogle Scholar
  44. Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T et al (2011) Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 68(11):1095–1102. doi: 10.1001/archgenpsychiatry.2011.76 PubMedCrossRefGoogle Scholar
  45. Harada M (1995) Minamata disease: ethylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25(1):1–24. doi: 10.3109/10408449509089885 PubMedCrossRefGoogle Scholar
  46. Hertz-Picciotto I, Delwiche L (2009) The rise in autism and the role of age at diagnosis. Epidemiology 20(1):622–623CrossRefGoogle Scholar
  47. Hertz-Picciotto I, Green PG, Delwiche L, Hansen R, Walker C, Pessah IN (2010) Blood mercury concentrations in CHARGE Study children with and without autism. Environ Health Perspect 118(1):161–166. doi: 10.1289/ehp.0900736 PubMedGoogle Scholar
  48. Horvath K, Perman JA (2002) Autistic disorder and gastrointestinal disease. Curr Opin Pediatr 14(5):583–587PubMedCrossRefGoogle Scholar
  49. Howe A, Fung LH, Lalor G, Rattray R, Vutchkov M (2005) Elemental composition of Jamaican foods 1: a survey of five food crop categories. Environ Geochem Health 27(1):19–30. doi: 10.1007/s10653-004-5671-7 PubMedCrossRefGoogle Scholar
  50. Hughes JR (2008) A review of recent reports on autism: 1000 studies published in 2007. Epilepsy Behav 13(3):425–437. doi: 10.1016/j.yebeh.2008.06.015 PubMedCrossRefGoogle Scholar
  51. Hultman CM, Sparen P, Cnattingius S (2002) Perinatal risk factors for infantile autism. Epidemiology 13(4):417–423PubMedCrossRefGoogle Scholar
  52. Ibrahim SH, Voigt RG, Katusic SK, Weaver AL, Barbaresi WJ (2009) Incidence of gastrointestinal symptoms in children with autism: a population-based study. Pediatrics 124(2):680–686PubMedCrossRefGoogle Scholar
  53. Ip P, Wong V, Ho M, Lee J, Wong W (2004) Mercury exposure in children with autistic spectrum disorder: case–control study. J Child Neurol 19(6):431–434PubMedGoogle Scholar
  54. Jakus P, Krupnick AJ, Resources for the Future (2002) The benefits and costs of fish consumption advisories for mercury. Retrieved from Resources for the Future http://www.rff.org/documents/RFF-DP-02-55.pdf
  55. Jedrychowski W, Perera F, Jankowski J, Rauh V, Flak E, Caldwell KL et al (2007) Fish consumption in pregnancy, cord blood mercury level and cognitive and psychomotor development of infants followed over the first three years of life: Krakow epidemiologic study. Environ Int 33(8):1057–1062. doi: 10.1016/j.envint.2007.06.001 PubMedCrossRefGoogle Scholar
  56. Julvez J, Debes F, Weihe P, Choi A, Grandjean P (2010) Sensitivity of continuous performance test (CPT) at age 14 years to developmental methylmercury exposure. Neurotoxicol Teratol 32(6):627–632. doi: 10.1016/j.ntt.2010.08.001 PubMedCrossRefGoogle Scholar
  57. Kalmijn S, van Boxtel MP, Ocke M, Verschuren WM, Kromhout D, Launer LJ (2004) Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology 62(2):275–280PubMedCrossRefGoogle Scholar
  58. Kern JK, Grannemann BD, Trivedi MH, Adams JB (2007) Sulfhydryl-reactive metals in autism. J Toxicol Environm Health A 70(8):715–721CrossRefGoogle Scholar
  59. King M, Bearman P (2009) Diagnostic change and the increased prevalence of autism. Int J Epidemiol 38(5):1224–1234PubMedCrossRefGoogle Scholar
  60. King MD, Bearman PS (2011) Socioeconomic status and the increased prevalence of autism in California. Am Sociol Rev 76(2):320–346. doi: 10.1177/0003122411399389 PubMedCrossRefGoogle Scholar
  61. Knight C, Kaiser J, Lalor GC, Robotham H, Witter JV (1997) Heavy metals in surface water and stream sediments in Jamaica. Environ Geochem Health 19(2):63–66. doi: 10.1023/A:1018442219943 CrossRefGoogle Scholar
  62. Knobeloch LM, Ziarnik M, Anderson HA, Dodson VN (1995) Imported seabass as a source of mercury exposure: a Wisconsin case study. Environ Health Perspect 103(6):604–606PubMedCrossRefGoogle Scholar
  63. Kris-Etherton PM, Harris WS, Appel LJ (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106(21):2747–2757PubMedCrossRefGoogle Scholar
  64. Kumar R, Christian S (2009) Genetics of autism spectrum disorders. Curr Neurol Neurosci Rep 9(3):188–197. doi: 10.1007/s11910-009-0029-2 PubMedCrossRefGoogle Scholar
  65. Lakshmi Priya M, Geetha A (2010) Level of trace elements (copper, zinc, magnesium and selenium) and toxic elements (lead and mercury) in the hair and nail of children with autism. Biol Trace Elem Res 142(2):148–158PubMedCrossRefGoogle Scholar
  66. Lalor GC (1996) Geochemical mapping in Jamaica. Environ Geochem Health 18(3):89–97. doi: 10.1007/BF01771284 CrossRefGoogle Scholar
  67. Lando AM, Zhang Y (2011) Awareness and knowledge of methylmercury in fish in the United States. Environ Res 111(3):442–450. doi: 10.1016/j.envres.2011.01.004 PubMedCrossRefGoogle Scholar
  68. Landrigan PJ (2010) What causes autism? Exploring the environmental contribution. Curr Opin Pediatr. doi: 10.1097/MOP.0b013e328336eb9a
  69. Larsson HJ, Eaton WW, Madsen KM, Vestergaard M, Olesen AV, Agerbo E et al (2005) Risk factors for autism: perinatal factors, parental psychiatric history, and socioeconomic status. Am J Epidemiol 161(10):916–925PubMedCrossRefGoogle Scholar
  70. Llop S, Guxens M, Murcia M, Lertxundi A, Ramon R, Riano I, et al. (2012) Prenatal exposure to mercury and infant neurodevelopment in a multicenter cohort in Spain: study of potential modifiers. Am J Epidemiol. doi: 10.1093/aje/kwr328
  71. Lord C, Rutter M, DiLavore PC, Risi S (2002) Autism diagnostic observation schedule (ADOS). Western Psychological Services, Los AngelesGoogle Scholar
  72. MacLean CH, Issa AM, Newberry SJ, Mojica WA, Morton SC, Garland RH et al (2005) Effects of omega-3 fatty acids on cognitive function with aging, dementia, and neurological diseases. Evid Rep Technol Assess (Summ) 114:1–3Google Scholar
  73. Magos L, Clarkson TW (2006) Overview of the clinical toxicity of mercury. Ann Clin Biochem 43(Pt 4):257–268. doi: 10.1258/000456306777695654 PubMedCrossRefGoogle Scholar
  74. Marsh DO, Myers GJ, Clarkson TW, Amin-Zaki L, Tikriti S, Majeed MA (1980) Fetal methylmercury poisoning: clinical and toxicological data on 29 cases. Ann Neurol7(4):348–353. doi: 10.1002/ana.410070412 PubMedCrossRefGoogle Scholar
  75. Monrroy SX, Lopez RW, Roulet M, Benefice E (2008) Lifestyle and mercury contamination of Amerindian populations along the Beni River (lowland Bolivia). J Environ Health 71(4):44–50PubMedGoogle Scholar
  76. Mozaffarian D (2009) Fish, mercury, selenium and cardiovascular risk: current evidence and unanswered questions. Int J Environ Res Public Health 6:1894–1916. doi: 10.3390/ijerph6061894 PubMedCrossRefGoogle Scholar
  77. Murata K, Weihe P, Renzoni A, Debes F, Vasconcelos R, Zino F et al (1999) Delayed evoked potentials in children exposed to methylmercury from seafood. Neurotoxicol Teratol 21(4):343–348PubMedCrossRefGoogle Scholar
  78. Myers GJ, Davidson PW, Palumbo D, Shamlaye C, Cox C, Cernichiari E et al (2000) Secondary analysis from the Seychelles Child Development Study: the child behavior checklist. Environ Res 84(1):12–19. doi: 10.1006/enrs.2000.4085 PubMedCrossRefGoogle Scholar
  79. Myers GJ, Thurston SW, Pearson AT, Davidson PW, Cox C, Shamlaye CF et al (2009) Postnatal exposure to methyl mercury from fish consumption: a review and new data from the Seychelles Child Development Study. Neurotoxicology 30(3):338–349. doi: 10.1016/j.neuro.2009.01.005 PubMedCrossRefGoogle Scholar
  80. National Research Council (2000) Toxicological effects of methylmercury. National Academy Press, Washington, DC. Retrieved from http://www.nap.edu/openbook.php?record_id=9899&page=R1
  81. Ng DK, Chan CH, Soo MT, Lee RS (2007) Low-level chronic mercury exposure in children and adolescents: meta-analysis. Pediatr Int 49(1):80–87. doi: 10.1111/j.1442-200X.2007.02303.x PubMedCrossRefGoogle Scholar
  82. Oken E, Bellinger DC (2008) Fish consumption, methylmercury and child neurodevelopment. Curr Opin Pediatr 20(2):178–183. doi: 10.1097/MOP.0b013e3282f5614c PubMedCrossRefGoogle Scholar
  83. Oken E, Wright RO, Kleinman KP, Bellinger D, Amarasiriwardena CJ, Hu H et al (2005) Maternal fish consumption, hair mercury, and infant cognition in a U.S. Cohort. Environ Health Perspect 113(10):1376–1380PubMedCrossRefGoogle Scholar
  84. Palmer RF (2010) Conclusions should be based on appropriate methodologies. Pediatrics 126(5), eLetter, Retrieved from http://pediatrics.aappublications.org/content/126/4/656#responses
  85. Pennsylvania Fish and Boat Commission. (2012). Commonwealth of Pennsylvania public health advisory 2012 fish consumption. Retrieved from Pennsylvania Summary of Fishing Regulations and Laws http://fishandboat.com/fishpub/summary/sumconsumption.pdf
  86. Rahbar MH, Samms-Vaughan M, Loveland KA, Pearson DA, Bressler J, Chen Z, et al (2012) Maternal and paternal age are jointly associated with childhood autism in Jamaican. J Autism Dev Disord. doi: 10.1007/s10803-011-1438-z
  87. Rapin I (1997) Autism. N Engl J Med 337(2):97–104PubMedCrossRefGoogle Scholar
  88. Reichenberg A, Gross R, Weiser M, Bresnahan M, Silverman J, Harlap S et al (2006) Advancing paternal age and autism. Arch Gen Psychiatry 63(9):1026–1032PubMedCrossRefGoogle Scholar
  89. Rodier PM, Hyman SL (1998) Early environmental factors in autism. Ment Retard Dev Disabil Res Rev 4(2):121–128CrossRefGoogle Scholar
  90. Rosner B (2010) Fundamental of biostatistics, 7th edn. Thomson-Brooks/Cole, BelmontGoogle Scholar
  91. Rutter M, Bailey A, Lord C (2003a) SCQ: the Social Communication Questionnaire. Manual. Western Psychological Services, Los AngelesGoogle Scholar
  92. Rutter M, Le CA, Lord C (2003b) Autism Diagnostic Interview-Revised (ADI-R). Western Psychological Services, Los AngelesGoogle Scholar
  93. SAS Institute Inc (2008). SAS® 9.2. SAS Institute Inc., CaryGoogle Scholar
  94. Sasanfar R, Haddad S, Tolouei A, Ghadami M, Yu D, Santangelo S (2010) Paternal age increases the risk for autism in an Iranian population sample. Mol Autism 1(1):2. doi: 10.1186/2040-2392-1-2 PubMedCrossRefGoogle Scholar
  95. Schober SE, Sinks TH, Jones RL, Bolger PM, McDowell M, Osterloh J et al (2003) Blood mercury levels in US children and women of childbearing age, 1999–2000. JAMA 289(13):1667–1674PubMedCrossRefGoogle Scholar
  96. Shelton JF, Tancredi DJ, Hertz-Picciotto I (2010) Independent and dependent contributions of advanced maternal and paternal ages to autism risk. Autism Res 3(1):30–39. doi: 10.1002/aur.116 PubMedGoogle Scholar
  97. Shimshack JP, Ward MB, Beatty TKM (2007) Mercury advisories: information, education, and fish consumption. J Environ Econ Manag 53(2):158–179CrossRefGoogle Scholar
  98. Silbernagel SM, Carpenter DO, Gilbert SG, Gochfeld M, Groth E III, Hightower JM et al (2011) Recognizing and preventing overexposure to methylmercury from fish and seafood consumption: information for physicians. J Toxicol 2011:983072. doi: 10.1155/2011/983072 PubMedGoogle Scholar
  99. Song JW, Chung KC (2010) Observational studies: cohort and case-control studies. Plast Reconstr Surg 126(6):2234–2242. doi: 10.1097/PRS.0b013e3181f44abc PubMedCrossRefGoogle Scholar
  100. Sontrop JM, Campbell MK, Evers SE, Speechley KN, Avison WR (2007) Fish consumption among pregnant women in London, Ontario: associations with socio-demographic and health and lifestyle factors. Can J Public Health 98(5):389–394PubMedGoogle Scholar
  101. Stern AH, Korn LR (2011) An approach for quantitatively balancing methylmercury risk and omega-3 benefit in fish consumption advisories. Environ Health Perspect 119(8):1043–1046. doi: 10.1289/ehp.1002824 PubMedCrossRefGoogle Scholar
  102. Steuerwald U, Weihe P, Jorgensen PJ, Bjerve K, Brock J, Heinzow B et al (2000) Maternal seafood diet, methylmercury exposure, and neonatal neurologic function. J Pediatr 136(5):599–605. doi: 10.1067/mpd.2000.102774 PubMedCrossRefGoogle Scholar
  103. The Centers for Disease Control and Prevention (2009a) Fourth National Report on Human Exposure to Environmental Chemicals. Retrieved from http://www.cdc.gov/ExposureReport/
  104. The Centers for Disease Control and Prevention (2009b) National Survey of Ambulatory Surgery Data Collection and Processing. Centers for Disease Control and Prevention (CDC). Retrieved from http://www.cdc.gov/nchs/nsas/nsas_collection.htm
  105. The Texas Department of State Health Services, US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (2005) Mercury exposure investigation caddo lake area. The Texas Department of State Health ServicesGoogle Scholar
  106. Trondsen T, Scholderer J, Lund E, Eggen AE (2003) Perceived barriers to consumption of fish among Norwegian women. Appetite 41(3):301–314PubMedCrossRefGoogle Scholar
  107. Turyk ME, Bhavsar SP, Bowerman W, Boysen E, Clark M, Diamond M et al (2012) Risks and benefits of consumption of great lakes fish. Environ Health Perspect 120(1):11–18. doi: 10.1289/ehp.1003396 PubMedCrossRefGoogle Scholar
  108. US Environmental Protection Agency (2011a) Mercury in dental amalgam. Retrieved from http://www.epa.gov/hg/dentalamalgam.html
  109. US Environmental Protection Agency (2011b) Thermometers. Retrieved from http://www.epa.gov/mercury/thermometer-main.html
  110. Valicenti-McDermott M, McVicar K, Rapin I, Wershil BK, Cohen H, Shinnar S (2006) Frequency of gastrointestinal symptoms in children with autistic spectrum disorders and association with family history of autoimmune disease. J Dev Behav Pediatr 27(2 Suppl):S128–S136PubMedCrossRefGoogle Scholar
  111. Vinot N, Jouin M, Lhomme-Duchadeuil A, Guesnet P, Alessandri JM, Aujard F, et al (2011) Omega-3 fatty acids from fish oil lower anxiety, improve cognitive functions and reduce spontaneous locomotor activity in a non-human primate. PLoS One 6(6):e20491. doi: 10.1371/journal.pone.0020491
  112. Volkmar FR, Chawarska K (2008) Autism in infants: an update. World Psychiatry 7(1):19–21PubMedGoogle Scholar
  113. Volkmar F, Chawarska K, Klin A (2005) Autism in infancy and early childhood. Annu Rev Psychol 56:315–336. doi: 10.1146/annurev.psych.56.091103.070159 PubMedCrossRefGoogle Scholar
  114. Wilhelm M, Schulz C, Schwenk M (2006) Revised and new reference values for arsenic, cadmium, lead, and mercury in blood or urine of children: basis for validation of human biomonitoring data in environmental medicine. Int J Hyg Environ Health 209(3):301–305PubMedCrossRefGoogle Scholar
  115. Wong SL, Lye EJ (2008) Lead, mercury and cadmium levels in Canadians. Health Rep 19(4):31–36PubMedGoogle Scholar
  116. Xue F, Holzman C, Rahbar MH, Trosko K, Fischer L (2007) Maternal fish consumption, mercury levels, and risk of preterm delivery. Environ Health Perspect 115(1):42–47PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mohammad H. Rahbar
    • 1
    • 2
  • Maureen Samms-Vaughan
    • 3
  • Katherine A. Loveland
    • 4
  • Manouchehr Ardjomand-Hessabi
    • 8
  • Zhongxue Chen
    • 9
  • Jan Bressler
    • 5
  • Sydonnie Shakespeare-Pellington
    • 3
  • Megan L. Grove
    • 5
  • Kari Bloom
    • 10
  • Deborah A. Pearson
    • 6
  • Gerald C. Lalor
    • 7
  • Eric Boerwinkle
    • 1
    • 5
  1. 1.Division of Epidemiology, Human Genetics, and Environmental Sciences (EHGES)The University of Texas School of Public Health at HoustonHoustonUSA
  2. 2.Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS)The University of Texas Health Science Center at Houston (UTHealth)HoustonUSA
  3. 3.Department of Child HealthThe University of the West Indies (UWI)KingstonJamaica
  4. 4.Department of Psychiatry and Behavioral Sciences/Center of Excellence on Development and Psychopathology, and Changing Lives Through Autism Spectrum Services (C.L.A.S.S.) Clinic, UTHealth Medical SchoolThe University of Texas Health Science Center at Houston (UTHealth)HoustonUSA
  5. 5.Human Genetics Center, School of Public HealthThe University of Texas Health Science Center at Houston (UTHealth)HoustonUSA
  6. 6.Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, UTHealth Medical SchoolThe University of Texas Health Science Center at Houston (UTHealth)HoustonUSA
  7. 7.International Centre for Environmental Nuclear ScienceThe University of the West IndiesKingstonJamaica
  8. 8.Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS)The University of Texas Health Science Center at Houston (UTHealth)HoustonUSA
  9. 9.Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS)The University of Texas Health Science Center at Houston (UTHealth)HoustonUSA
  10. 10.Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS)The University of Texas Health Science Center at Houston (UTHealth)HoustonUSA

Personalised recommendations