Neurotoxicity Research

, Volume 20, Issue 2, pp 150–158 | Cite as

Flavin-Containing Monooxygenase mRNA Levels are Up-Regulated in ALS Brain Areas in SOD1-Mutant Mice

  • Stella Gagliardi
  • Paolo Ogliari
  • Annalisa Davin
  • Manuel Corato
  • Emanuela Cova
  • Kenneth Abel
  • John R. Cashman
  • Mauro Ceroni
  • Cristina Cereda
Article

Abstract

Flavin-containing monooxygenases (FMOs) are a family of microsomal enzymes involved in the oxygenation of a variety of nucleophilic heteroatom-containing xenobiotics. Recent results have pointed to a relation between Amyotrophic Lateral Sclerosis (ALS) and FMO genes. ALS is an adult-onset, progressive, and fatal neurodegenerative disease. We have compared FMO mRNA expression in the control mouse strain C57BL/6J and in a SOD1-mutated (G93A) ALS mouse model. Fmo expression was examined in total brain, and in subregions including cerebellum, cerebral hemisphere, brainstem, and spinal cord of control and SOD1-mutated mice. We have also considered expression in male and female mice because FMO regulation is gender-related. Real-Time TaqMan PCR was used for FMO expression analysis. Normalization was done using hypoxanthine–guanine phosphoribosyl transferase (Hprt) as a control housekeeping gene. Fmo genes, except Fmo3, were detectably expressed in the central nervous system of both control and ALS model mice. FMO expression was generally greater in the ALS mouse model than in control mice, with the highest increase in Fmo1 expression in spinal cord and brainstem. In addition, we showed greater Fmo expression in males than in female mice in the ALS model. The expression of Fmo1 mRNA correlated with Sod1 mRNA expression in pathologic brain areas. We hypothesize that alteration of FMO gene expression is a consequence of the pathological environment linked to oxidative stress related to mutated SOD1.

Keywords

FMO Amyotrophic lateral sclerosis qPCR SOD1 Exposure to toxins 

References

  1. Abel EL (2007) Football increases the risk for Lou Gehrig’s disease, amyotrophic lateral sclerosis. Percept Mot Skills 104(3 pt 2):1251–1254PubMedGoogle Scholar
  2. Behl C, Widmann M, Trapp T, Holsboer F (1995) 17-beta estradiol protects neurons from oxidative stress-induced cell death in vitro. Biochem Biophys Res Commun 216(2):473–812PubMedCrossRefGoogle Scholar
  3. Cashman JR (1995) Structural and catalytic properties of the mammalian flavin-containing monooxygenase. Chem Res Toxicol 8(2):166–181PubMedCrossRefGoogle Scholar
  4. Cereda C, Gabanti E, Corato M, de Silvestri A, Alimonti D, Cova E, Malaspina A, Ceroni M (2006) Increased incidence of FMO1 gene single nucleotide polymorphisms in sporadic amyotrophic lateral sclerosis. Amyotroph Lateral Scler 7(4):227–234PubMedCrossRefGoogle Scholar
  5. Choi CI, Lee YD, Gwag BJ, Cho SI, Kim SS, Suh-Kim H (2008) Effects of estrogen on lifespan and motor functions in female hSOD1 G93A transgenic mice. J Neurol Sci 268:40–47PubMedCrossRefGoogle Scholar
  6. Cleveland DW, Rothstein JD (2001) From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci 2:806–819PubMedCrossRefGoogle Scholar
  7. Coecke S, Debast G, Phillips IR, Vercruysse A, Shephard EA, Rogiers V (1998) Hormonal regulation of microsomal flavin-containing monooxygenase activity by sex steroids and growth hormone in co-cultured adult male rat hepatocytes. Biochem Pharmacol 56(8):1047–1051PubMedCrossRefGoogle Scholar
  8. Costa LG, Richter RJ, Li WF, Cole T, Guizzetti M, Furlong CE (2003) Paraoxonase (PON 1) as a biomarker of susceptibility for organophosphate toxicity. Biomarkers 8(1):1–12PubMedCrossRefGoogle Scholar
  9. Elfarra AA (1995) Potential role of the flavin-containing monooxygenases in the metabolism of endogenous compounds. Chem Biol Interact 96(1):47–55PubMedCrossRefGoogle Scholar
  10. Falls JG, Ryu DJ, Cao Y, Levi PE, Hodgson E (1997) Regulation of mouse liver flavin-containing monooxygenases 1 and 3 by sex steroids. Arch Biochem Biophys 342(2):212–223PubMedCrossRefGoogle Scholar
  11. Frutiger K, Lukas TJ, Gorrie G, Ajroud-Driss S, Siddique T (2008) Gender difference in levels of Cu/Zn superoxide dismutase (SOD1) in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler 9(3):184–187PubMedCrossRefGoogle Scholar
  12. Gagliardi S, Cova E, Davin A, Guareschi S, Abel K, Alvisi E, Laforenza U, Ghidoni R, Cashman JR, Ceroni M, Cereda C (2010) SOD1 mRNA expression in sporadic amyotrophic lateral sclerosis. Neurobiol Dis 39(2):198–203PubMedCrossRefGoogle Scholar
  13. Garbuzova-Davis S, Saporta S, Haller E, Kolomey I, Bennett SP, Potter H, Sanberg PR (2007) Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modelling ALS. PloS One 2(11):e1205PubMedCrossRefGoogle Scholar
  14. Hines RN, Cashman JR, Philpot RM, Williams DE, Ziegler DM (1994) The mammalian flavin-containing monooxygenases: molecular characterization and regulation of expression. Toxicol Appl Pharmacol 125:1–6PubMedCrossRefGoogle Scholar
  15. Janmohamed A, Hernandez D, Phillips IR, Shephard EA (2004) Cell-, tissue-, sex- and developmental stage-specific expression of mouse flavin-containing monooxygenases (Fmos). Biochem Pharmacol 68(1):73–83PubMedCrossRefGoogle Scholar
  16. Johnson FO, Atchison WD (2009) The role of environmental mercury, lead and pesticide exposure in development of amyotrophic lateral sclerosis. Neurotoxicology 30(5):761–765PubMedCrossRefGoogle Scholar
  17. Kruman II, Pedersen WA, Springer JE, Mattson MP (1999) ALS-linked Cu/Zn-SOD mutation increases vulnerability of motor neurons to excitotoxicity by a mechanism involving increased oxidative stress and perturbed calcium homeostasis. Exp Neurol 160(1):28–39PubMedCrossRefGoogle Scholar
  18. LeBel CP, Ali S, McKee M, Bondy SC (1990) Organometal-induced increases in oxygen reactive species: the potential of 2′,7′-dichlorofluorescin diacetate as an index of neurotoxic damage. Toxicol Appl Pharmacol 104:341–346CrossRefGoogle Scholar
  19. Leoni C, Buratti FM, Testai E (2008) The participation of human hepatic P450 isoforms, flavin-containing monooxygenases and aldehyde oxidase in the biotransformation of the insecticide fenthion. Toxicol Appl Pharmacol 233(2):343–352PubMedCrossRefGoogle Scholar
  20. Li CY, Sung FC (2003) Association between occupational exposure to power frequency electromagnetic fields and amyotrophic lateral sclerosis: a review. Am J Ind Med 43(2):212–220PubMedCrossRefGoogle Scholar
  21. Liu D (1996) The roles of free radicals in amyotrophic lateral sclerosis. J Mol Neurosci 7(3):159–167PubMedCrossRefGoogle Scholar
  22. Liu R, Althaus JS, Ellerbrock BR, Becker DA, Gurney ME (1998) Enhanced oxygen radical production in a transgenic mouse model of familial amyotrophic lateral sclerosis. Ann Neurol 44(5):763–770PubMedCrossRefGoogle Scholar
  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25(4):402–408PubMedCrossRefGoogle Scholar
  24. Mahoney DJ, Kaczor JJ, Bourgeois J, Yasuda N, Tarnopolsky MA (2006) Oxidative stress and antioxidant enzyme upregulation in SOD1–G93A mouse skeletal muscle. Muscle Nerve 33(6):809–816PubMedCrossRefGoogle Scholar
  25. Malaspina A, Kaushik N, de Belleroche J (2001) Differential expression of 14 genes in amyotrophic lateral sclerosis spinal cord detected using gridded cDNA arrays. J Neurochem 77(1):132–145PubMedCrossRefGoogle Scholar
  26. Manjaly ZR, Scott KM, Abhinav K, Wijesekera L, Ganesalingam J, Goldstein LH, Janssen A, Dougherty A, Willey E, Stanton BR, Turner MR, Ampong MA, Sakel M, Orrell RW, Howard R, Shaw CE, Leigh PN, Al-Chalabi A (2010) The sex ratio in amyotrophic lateral sclerosis: a population based study. Amyotroph Lateral Scler 11(5):439–442PubMedCrossRefGoogle Scholar
  27. Mulder DW, Kurland LT, Iriarte LL (1954) Neurologic diseases on the island of Guam. U S Armed Forces Med J 5(12):1724–1739PubMedGoogle Scholar
  28. Pamphlett R, Patricia W (1996) Motor neuron uptake of low dose inorganic mercury. J Neurol Sci 135:63–67PubMedCrossRefGoogle Scholar
  29. Rao AK, Ziegler YS, McLeod IX, Yates JR, Nardulli AM (2008) Effects of Cu/Zn superoxide dismutase on estrogen responsiveness and oxidative stress in human breast cancer cells. Mol Endocrinol 22(5):1113–1124PubMedCrossRefGoogle Scholar
  30. Ricci C, Battistini S, Cozzi L, Benigni M, Origone P, Verriello L, Lunetta C, Cereda C, Milani P, Greco G, Patrosso MC, Causarano R, Caponnetto C, Giannini F, Corbo M, Penco S (2010) Lack of association of PON polymorphisms with sporadic ALS in an Italian population. Neurobiol Aging Apr 7 [Epub ahead of print]Google Scholar
  31. Rizzardini M, Lupi M, Bernasconi S, Mangolini A, Cantoni L (2003) Mitochondrial dysfunction and death in motor neurons exposed to the glutathione-depleting agent ethacrynic acid. J Neurol Sci 207(1–2):51–58PubMedCrossRefGoogle Scholar
  32. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62PubMedCrossRefGoogle Scholar
  33. Saeed M, Siddique N, Hung WY, Usacheva E, Liu E, Sufit RL, Heller SL, Haines JL, Pericak-Vance M, Siddique T (2006) Paraoxonase cluster polymorphisms are associated with sporadic ALS. Neurology 67(5):771–776PubMedCrossRefGoogle Scholar
  34. Shaw PJ (2005) Molecular and cellular pathways of neurodegeneration in motor neurone disease. J Neurol Neurosurg Psychiatry 76:1046–1057PubMedCrossRefGoogle Scholar
  35. Siddens LK, Henderson MC, Vandyke JE, Williams DE, Krueger SK (2008) Characterization of mouse flavin-containing monooxygenase transcript levels in lung and liver, and activity of expressed isoforms. Biochem Pharmacol 75(2):570–579PubMedCrossRefGoogle Scholar
  36. Slowik A, Tomik B, Wolkow PP, Partyka D, Turaj W, Malecki MT, Pera J, Dziedzic T, Szczudlik A, Figlewicz DA (2006) Paraoxonase gene polymorphisms and sporadic ALS. Neurology 67(5):766–770PubMedCrossRefGoogle Scholar
  37. Steele JC, McGeer PL (2008) The ALS/PDC syndrome of Guam and the cycad hypothesis. Neurology 70(21):1984–1990PubMedCrossRefGoogle Scholar
  38. Su M, Wakabayashi K, Kakita A, Ikuta F, Takahashi H (1998) Selective involvement of large motor neurons in the spinal cord of rats treated with methylmercury. J Neurol Sci 156:12–17PubMedCrossRefGoogle Scholar
  39. Suh JK, Robertus JD (2000) Yeast flavin-containing monooxygenase is induced by the unfolded protein response. Proc Natl Acad Sci U S A 97(1):121–126PubMedCrossRefGoogle Scholar
  40. Suh JK, Poulsen LL, Ziegler DM, Robertus JD (1999) Yeast flavin-containing monooxygenase generates oxidizing equivalents that control protein folding in the endoplasmic reticulum. Proc Natl Acad Sci U S A 96(6):2687–2691PubMedCrossRefGoogle Scholar
  41. Venkatesh K, Levi PE, Hodgson E (1991) The flavin-containing monooxygenase of mouse kidney. A comparison with the liver enzyme. Biochem Pharmacol 42(7):1411–1420PubMedCrossRefGoogle Scholar
  42. Venkatesh K, Blake B, Levi PE, Hodgson E (1992) The flavin-containing monooxygenase in mouse lung: evidence for expression of multiple forms. J Biochem Toxicol 7(3):163–169PubMedCrossRefGoogle Scholar
  43. Watanabe M, Dykes-Hoberg M, Culotta VC, Price DL, Wong PC, Rothstein JD (2001) Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Neurobiol Dis 8(6):933–941PubMedCrossRefGoogle Scholar
  44. Weisskopf MG, Ascherio A (2009) Cigarettes and amyotrophic lateral sclerosis: only smoke or also fire? Ann Neurol 65(4):361–362PubMedCrossRefGoogle Scholar
  45. Wills AM, Cronin S, Slowik A, Kasperaviciute D, Van Es MA, Morahan JM, Valdmanis PN, Meininger V, Melki J, Shaw CE, Rouleau GA, Fisher EM, Shaw PJ, Morrison KE, Pamphlett R, Van den Berg LH, Figlewicz DA, Andersen PM, Al-Chalabi A, Hardiman O, Purcell S, Landers JE, Brown RH Jr (2009) A large-scale international meta-analysis of paraoxonase gene polymorphisms in sporadic ALS. Neurology 73(1):16–24PubMedCrossRefGoogle Scholar
  46. Zhang J, Cashman JR (2006) Quantitative analysis of FMO gene mRNA levels in human tissue. Drug Metab Dispos 34(1):19–26PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Stella Gagliardi
    • 1
    • 2
  • Paolo Ogliari
    • 1
  • Annalisa Davin
    • 1
  • Manuel Corato
    • 1
    • 2
  • Emanuela Cova
    • 1
  • Kenneth Abel
    • 3
  • John R. Cashman
    • 3
  • Mauro Ceroni
    • 1
  • Cristina Cereda
    • 1
  1. 1.Lab of Experimental NeurobiologyIRCCS National Neurological Institute “C. Mondino”PaviaItaly
  2. 2.Department of Neurological SciencesUniversity of PaviaPaviaItaly
  3. 3.Human BioMolecular Research InstituteSan DiegoUSA

Personalised recommendations