Neurotoxicity Research

, Volume 15, Issue 1, pp 71–81 | Cite as

Diabetic Hyperglycemia Aggravates Seizures and Status Epilepticus-induced Hippocampal Damage

  • Chin-Wei Huang
  • Juei-Tang Cheng
  • Jing-Jane Tsai
  • Sheng-Nan Wu
  • Chao-Ching HuangEmail author


Epileptic seizures in diabetic hyperglycemia (DH) are not uncommon. This study aimed to determine the acute behavioral, pathological, and electrophysiological effects of status epilepticus (SE) on diabetic animals. Adult male Sprague-Dawley rats were first divided into groups with and without streptozotocin (STZ)-induced diabetes, and then into treatment groups given a normal saline (NS) (STZ-only and NS-only) or a lithium-pilocarpine injection to induce status epilepticus (STZ + SE and NS + SE). Seizure susceptibility, severity, and mortality were evaluated. Serial Morris water maze test and hippocampal histopathology results were examined before and 24 h after SE. Tetanic stimulation-induced long-term potentiation (LTP) in a hippocampal slice was recorded in a multi-electrode dish system. We also used a simulation model to evaluate intracellular adenosine triphosphate (ATP) and neuroexcitability. The STZ + SE group had a significantly higher percentage of severe seizures and SE-related death and worse learning and memory performances than the other three groups 24 h after SE. The STZ + SE group, and then the NS + SE group, showed the most severe neuronal loss and mossy fiber sprouting in the hippocampal CA3 area. In addition, LTP was markedly attenuated in the STZ + SE group, and then the NS + SE group. In the simulation, increased intracellular ATP concentration promoted action potential firing. This finding that rats with DH had more brain damage after SE than rats without diabetes suggests the importance of intensively treating hyperglycemia and seizures in diabetic patients with epilepsy.


Diabetes Seizures Status epilepticus 



This work was partly supported by grants from the National Science Council (NSC-96-2314-B-006-059) and National Cheng Kung University Hospital (NCKUH-2007-023 and NCKUH-9701015), Taiwan. We thank Bill Franke for editorial assistance.


  1. Baba A, Yasui T, Fujisawa S, Yamada RX, Yamada MK, Nishiyama N, Matsuki N, Ikegaya Y (2003) Activity-evoked capacitative Ca2+ entry: implications in synaptic plasticity. J Neurosci 23:7737–7741PubMedGoogle Scholar
  2. Biessels GJ, Kamal A, Urban IJ, Spruijt BM, Erkelens DW, Gispen WH (1998) Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: effects of insulin treatment. Brain Res 800:125–135PubMedCrossRefGoogle Scholar
  3. Biessels GJ, ter Laak MP, Kamal A, Gispen WH (2005) Effects of the Ca2+ antagonist nimodipine on functional deficits in the peripheral and central nervous system of streptozotocin-diabetic rats. Brain Res 1035:86–93PubMedCrossRefGoogle Scholar
  4. Biessels GJ, Deary IJ, Ryan CM (2008) Cognition and diabetes: a lifespan perspective. Lancet Neurol 7:184–190PubMedCrossRefGoogle Scholar
  5. Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A, Goodman PH, Harris FC Jr, Zirpe M, Natschläger T, Pecevski D, Ermentrout B, Djurfeldt M, Lansner A, Rochel O, Vieville T, Muller E, Davison AP, El Boustani S, Destexhe A (2007) Simulation of networks of spiking neurons: a review of tools and strategies. J Comput Neurosci 23:349–398PubMedCrossRefGoogle Scholar
  6. Chabot C, Massicotte G, Milot M, Trudeau F, Gagné J (1997) Impaired modulation of AMPA receptors by calcium-dependent processes in streptozotocin-induced diabetic rats. Brain Res 768:249–256PubMedCrossRefGoogle Scholar
  7. Chang YC, Huang AM, Kuo YM, Wang ST, Chang YY, Huang CC (2003) Febrile seizures impair memory and cAMP response-element binding protein activation. Ann Neurol 54:706–718PubMedCrossRefGoogle Scholar
  8. Chen JW, Wasterlain CG (2006) Status epilepticus: pathophysiology and management in adults. Lancet Neurol 5:246–256PubMedCrossRefGoogle Scholar
  9. Covolan L, Mello LE (2000) Temporal profile of neuronal injury following pilocarpine or kainic acid-induced status epilepticus. Epilepsy Res 39:133–152PubMedCrossRefGoogle Scholar
  10. Curia G, Longo D, Biagini G, Jones RS, Avoli M (2008) The pilocarpine model of temporal lobe epilepsy. The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 172:143–157PubMedCrossRefGoogle Scholar
  11. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research Group, Jacobson AM, Musen G, Ryan CM, Silvers N, Cleary P, Waberski B, Burwood A, Weinger K, Bayless M, Dahms W, Harth J (2007) Long-term effect of diabetes and its treatment on cognitive function. N Engl J Med 356:1842–1852PubMedCrossRefGoogle Scholar
  12. Ermentrout GB (2002) Simulating, analyzing, and animating dynamical system: a guide to XPPAUT for researchers and students. Society for Industrial and Applied Mathematics (SIAM), PhiladelphiaGoogle Scholar
  13. Gispen WH, Biessels GJ (2000) Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci 23:542–549PubMedCrossRefGoogle Scholar
  14. Greene AE, Todorova MT, Seyfried TN (2003) Perspectives on the metabolic management of epilepsy through dietary reduction and elevation of ketone bodies. J Neurochem 86:529–537PubMedCrossRefGoogle Scholar
  15. Helmstaedter C (2007) Cognitive outcome of status epilepticus in adults. Epilepsia S48:85–90CrossRefGoogle Scholar
  16. Hu K, Huang CS, Jan YN, Jan LY (2003) ATP-sensitive potassium channel traffic regulation by adenosine and protein kinase C. Neuron 38:417–432PubMedCrossRefGoogle Scholar
  17. Huang CW, Hsieh YJ, Pai MC, Tsai JJ, Huang CC (2005) Non-ketotic hyperglycemia-related epilepsia partialis continua with ictal unilateral parietal hyperperfusion. Epilepsia 46:1843–1844PubMedCrossRefGoogle Scholar
  18. Huang CW, Huang CC, Cheng JT, Tsai JJ, Wu SN (2007) Glucose and hippocampal neuronal excitability: the role of ATP-sensitive potassium channels. J Neurosci Res 85:1468–1477PubMedCrossRefGoogle Scholar
  19. Huang CW, Tsai JJ, Ou HY, Wang ST, Cheng JT, Wu SN, Huang CC (2008a) Diabetic Hyperglycemia is associated with the severity of epileptic seizures in adults. Epilepsy Res 79:71–77PubMedCrossRefGoogle Scholar
  20. Huang CW, Huang CC, Lin MW, Tsai JJ, Wu SN (2008b) The synergistic inhibitory actions of oxcarbazepine on voltage-gated sodium and potassium currents in differentiated NG108–15 neuronal cells and model neurons. Int J Neuropsychopharmacol 11:597–610PubMedCrossRefGoogle Scholar
  21. Kamal A, Biessels GJ, Duis SE, Gispen WH (2000) Learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: interaction of diabetes and ageing. Diabetologia 43:500–506PubMedCrossRefGoogle Scholar
  22. Lee HT, Chang YC, Wang LY, Wang ST, Huang CC, Ho CJ (2004) cAMP response element-binding protein activation in ligation preconditioning in neonatal brain. Ann Neurol 56:611–623PubMedCrossRefGoogle Scholar
  23. Lehmann TN, Gabriel S, Eilers A, Njunting M, Kovacs R, Schulze K, Lanksch WR, Heinemann U (2001) Fluorescent tracer in pilocarpine-treated rats shows widespread aberrant hippocampal neuronal connectivity. Eur J NeuroSci 14:83–95PubMedCrossRefGoogle Scholar
  24. Leroy C, Poisbeau P, Keller AF, Nehlig A (2004) Pharmacological plasticity of GABA(A) receptors at dentate gyrus synapses in a rat model of temporal lobe epilepsy. J Physiol 557:473–487PubMedCrossRefGoogle Scholar
  25. Liss B, Roeper J (2001) A role for neuronal K(ATP) channels in metabolic control of the seizure gate. Trends Pharmacol Sci 22:599–601PubMedCrossRefGoogle Scholar
  26. Ma W, Berg J, Yellen G (2007) Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels. J Neurosci 27:3618–3625PubMedCrossRefGoogle Scholar
  27. Magariños AM, McEwen BS (2000) Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress. Proc Natl Acad Sci USA 97:11056–11061PubMedCrossRefGoogle Scholar
  28. Mandrup-Poulsen T (1998) Diabetes. BMJ 316:1221–1225PubMedGoogle Scholar
  29. Marfella R, Di Filippo C, Esposito K, Nappo F, Piegari E, Cuzzocrea S, Berrino L, Rossi F, Giugliano D, D’Amico M (2004) Absence of inducible nitric oxide synthase reduces myocardial damage during ischemia reperfusion in streptozotocin-induced hyperglycemic mice. Diabetes 53:454–462PubMedCrossRefGoogle Scholar
  30. Mraovitch S, Calando Y, Régnier A, Lamproglou I, Vicaut E (2005) Post-seizures amygdaloallocortical microvascular lesion leading to atrophy and memory impairment. Neurobiol Dis 19:479–489PubMedCrossRefGoogle Scholar
  31. Oka H, Shimono K, Ogawa R, Sugihara H, Taketani M (1999) A new planar multielectrode array for extracellular recording: application to hippocampal acute slice. J Neurosci Methods 93:61–67PubMedCrossRefGoogle Scholar
  32. Pathak HR, Weissinger F, Terunuma M, Carlson GC, Hsu FC, Moss SJ, Coulter DA (2007) Disrupted dentate granule cell chloride regulation enhances synaptic excitability during development of temporal lobe epilepsy. J Neurosci 27:14012–14022PubMedCrossRefGoogle Scholar
  33. Pitkanen A, Schwartzkroin PA, Moshe SL (2006) Models of seizures and epilepsy. Elsevier Academic Press, BurlingtonGoogle Scholar
  34. Pitsch J, Schoch S, Gueler N, Flor PJ, van der Putten H, Becker AJ (2007) Functional role of mGluR1 and mGluR4 in pilocarpine-induced temporal lobe epilepsy. Neurobiol Dis 26:623–633PubMedCrossRefGoogle Scholar
  35. Qiu C, Cotch MF, Sigurdsson S, Garcia M, Klein R, Jonasson F, Klein BE, Eiriksdottir G, Harris TB, van Buchem MA, Gudnason V, Launer LJ (2008) Retinal and cerebral microvascular signs and diabetes: the age, gene/environment susceptibility-Reykjavik study. Diabetes 57:1645–1650PubMedCrossRefGoogle Scholar
  36. Raffo E, Koning E, Nehlig A (2004) Postnatal maturation of cytochrome oxidase and lactate dehydrogenase activity and age-dependent consequences of lithium-pilocarpine status epilepticus in the rat: a regional histoenzymology study. Pediatr Res 56:647–655PubMedCrossRefGoogle Scholar
  37. Raza M, Blair RE, Sombati S, Carter DS, Deshpande LS, DeLorenzo RJ (2004) Evidence that injury-induced changes in hippocampal neuronal calcium dynamics during epileptogenesis cause acquired epilepsy. Proc Natl Acad Sci USA 101:17522–17527PubMedCrossRefGoogle Scholar
  38. Santiago JF, Carvalho FF, Perosa SR, Siliano MR, Cruz JW, Fernandes MJ, Cavalheiro EA, Amado D, da Graça Naffah-Mazzacoratti M (2006) Effect of glycemic state in rats submitted to status epilepticus during development. Arq Neuropsiquiatr 64:233–239PubMedGoogle Scholar
  39. Schwechter EM, Veliskova J, Velisek L (2003) Correlation between extracellular glucose and seizure susceptibility in adult rats. Ann Neurol 53:91–101PubMedCrossRefGoogle Scholar
  40. Seino S, Miki T (2003) Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog Biophys Mol Biol 81:133–176PubMedCrossRefGoogle Scholar
  41. Singh BM, Strobos RJ (1989) Epilepsia partialis continua associated with nonketotic hyperglycemia: clinical and biochemical profile of 21 patients. Ann Neurol 8:155–160CrossRefGoogle Scholar
  42. Steffenach HA, Witter M, Moser MB, Moser EI (2005) Spatial memory in the rat requires the dorsolateral band of the entorhinal cortex. Neuron 45:301–313PubMedCrossRefGoogle Scholar
  43. Suzuki C, Ozaki I, Tanosaki M, Suda T, Baba M, Matsunaga M (2000) Peripheral and central conduction abnormalities in diabetes mellitus. Neurology 54:1932–1937PubMedGoogle Scholar
  44. Swan JH, Meldrum BS, Simon RP (1986) Hyperglycemia does not augment neuronal damage in experimental status epilepticus. Neurology 36:1351–1354PubMedGoogle Scholar
  45. Tomlinson DR, Gardiner NJ (2008) Glucose neurotoxicity. Nat Rev Neurosci 9:36–45PubMedCrossRefGoogle Scholar
  46. Trudeau F, Gagnon S, Massicotte G (2004) Hippocampal synaptic plasticity and glutamate receptor regulation: influences of diabetes mellitus. Eur J Pharmacol 490:177–186PubMedCrossRefGoogle Scholar
  47. Tsukamoto M, Yasui T, Yamada MK, Nishiyama N, Matsuki N, Ikegaya Y (2003) Mossy fibre synaptic NMDA receptors trigger non-Hebbian long-term potentiation at entorhino-CA3 synapses in the rat. J Physiol 546:665–675PubMedCrossRefGoogle Scholar
  48. Zupan G, Pilipović K, Hrelja A, Peternel S (2008) Oxidative stress parameters in different rat brain structures after electroconvulsive shock-induced seizures. Prog Neuropsychopharmacol Biol Psychiatry 32:771–777PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Chin-Wei Huang
    • 1
    • 2
  • Juei-Tang Cheng
    • 3
  • Jing-Jane Tsai
    • 2
  • Sheng-Nan Wu
    • 4
  • Chao-Ching Huang
    • 1
    • 5
    Email author
  1. 1.Institute of Clinical MedicineNational Cheng Kung University Medical CollegeTainan CityTaiwan
  2. 2.Department of NeurologyNational Cheng Kung University Medical CollegeTainan CityTaiwan
  3. 3.Department of PharmacologyNational Cheng Kung University Medical CollegeTainan CityTaiwan
  4. 4.Department of PhysiologyNational Cheng Kung University Medical CollegeTainan CityTaiwan
  5. 5.Department of Pediatrics, Institute of Clinical MedicineNational Cheng Kung University HospitalTainan CityTaiwan

Personalised recommendations