The first molecular detection of a Theileria-like species (Apicomplexa: Piroplasmida) in Meriones persicus from western Iran

  • Farnaz Kheirandish
  • Mohammad Hassan Kayedi
  • Ehsan Mostafavi
  • Seyedeh Zeinab Hosseini
  • Arian Karimi Rouzbahani
  • Asadollah Hosseini-ChegeniEmail author
Original Article


The archived blood of rodents species such as Meriones, Mus, and Microtus species was investigated in order to detect any piroplasms species. In this study 18S rRNA target gene of piroplasm parasite was amplified by PCR in a Meriones persicus; so, the Locus 1 and Locus 2 of 18S rRNA were sequenced, successfully. A Theileria-like taxa was suspected in accordance with the BLAST analysis of 18S rRNA L1 and L2 with 96% and 91% sequence homology, respectively. The present study was the first report of a Theileria-like species in M. persicus from Iran.


Haemoparasite Piroplasm PCR Sanger sequencing Phylogenetic tree Iran 



The researchers would like to express their gratitude to the authorities in Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, for their contribution in providing laboratory facilities. Authors deeply thank, Dr. Ahmad Mahmoudi, Ali Mohammadi, and Hamed Hanifi, the staff of Department of Epidemiology and Biostatistics of Institute Pasteur of Iran, whose participated in sampling and identification of rodent species.

Author contributions

AH-C designed the study. AH-C, SZH, FK, AKR, EM, and MHK collaborated to the sample collection, laboratory assays and the manuscript writing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

We hereby declare all ethical standards have been respected in preparation of the submitted article. This research is not involving human participants. We follow the guideline for the care and use of laboratory animals National Research Council (2010). Ethical approval of Lorestan University of Medical Sciences for the research project is: LUMS.REC.1395.104.


  1. Allsopp M, Cavalier-Smith T, De Waal D, Allsopp B (1994) Phylogeny and evolution of the piroplasms. Parasitology 108(2):147–152CrossRefGoogle Scholar
  2. Barandika J, Espí A, Oporto B, Del Cerro A, Barral M, Povedano I, García-Pérez A, Hurtado A (2016) Occurrence and genetic diversity of piroplasms and other apicomplexa in wild carnivores. Parasitol Open 2(6):1–7Google Scholar
  3. Beck R, Vojta L, Ćurković S, Mrljak V, Margaletić J, Habrun B (2011) Molecular survey of Babesia microti in wild rodents in central Croatia. Vector-Borne Zoonotic Dis 11(1):81–83CrossRefGoogle Scholar
  4. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10(4):e1003537CrossRefGoogle Scholar
  5. Chao L-L, Yu W-C, Shih C-M (2017) First detection and molecular identification of Babesia microti in Rattus losea captured from the offshore Kinmen Island of Taiwan. Ticks Tick-Borne Dis 8(2):313–319CrossRefGoogle Scholar
  6. Chavatte J-M, Karadjian G, Landau I (2018) Half a century after its discovery, new insights on Anthemosoma garnhami (Sporozoa, Piroplasmida): morphology, molecular characterisation and phylogenetic position. Parasitol Res 117(12):3917–3925CrossRefGoogle Scholar
  7. Conrad PA, Kjemtrup AM, Carreno RA, Thomford J, Wainwright K, Eberhard M, Quick R, Telford Iii SR, Herwaldt BL (2006) Description of Babesia duncani n. sp.(Apicomplexa: Babesiidae) from humans and its differentiation from other piroplasms. Int J Parasitol 36(7):779–789CrossRefGoogle Scholar
  8. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  9. Fay FH, Rausch RL (1969) Parasitic organisms in the blood of Arvicoline rodents in Alaska. J Parasitol 55(6):1258–1265CrossRefGoogle Scholar
  10. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27(2):221–224CrossRefGoogle Scholar
  11. Gunders AE, Hadani A (1974) Transmission of mammalian piroplasm by an argasid tick. Nature 247(5438):225–226CrossRefGoogle Scholar
  12. Harris DJ, Halajian A, Santos JL, Swanepoel LH, Taylor PJ, Xavier R, Neef G, Keith M, Weier S, Monadjem A (2018) Diversity of haemoprotozoan parasites infecting the wildlife of South Africa. Folia Parasitol 65:015Google Scholar
  13. Hofmeister E, Kolbert C, Abdulkarim A, Magera J, Hopkins M, Uhl J, Ar Ambyaye, Telford S III, Cockerill F III, Persing D (1998) Cosegregation of a novel Bartonella species with Borrelia burgdorferi and Babesia microti in Peromyscus leucopus. J Infect Dis 177(2):409–416CrossRefGoogle Scholar
  14. Homer MJ, Aguilar-Delfin I, Telford SR, Krause PJ, Persing DH (2000) Babesiosis. Clin Microbiol Rev 13(3):451–469CrossRefGoogle Scholar
  15. Jalovecka M, Hajdusek O, Sojka D, Kopacek P, Malandrin L (2018) The complexity of piroplasms life cycles. Front Cell Infect Microbiol 8:248CrossRefGoogle Scholar
  16. Karbowiak G, Fricova J, Stanko M, Hapunik J, Varfalvyova D (2010) Blood parasites of mound-building mouse, Mus spicilegus Petényi, 1882 (Mammalia, Rodentia). Wiadomości Parazytol 56(1):63–66Google Scholar
  17. Kjemtrup AM, Robinson T, Conrad PA (2001) Description and epidemiology of Theileria youngi n. sp. from a northern Californian dusky-footed woodrat (Neotoma fuscipes) population. J Parasitol 87(2):373–378CrossRefGoogle Scholar
  18. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evolut 33(7):1870–1874CrossRefGoogle Scholar
  19. Levine ND (1971) Taxonomy of the piroplasms. Trans Am Microsc Soc 90(1):2–33CrossRefGoogle Scholar
  20. Levine ND (1988) The protozoan phylum apicomplexa. CRC Press, Florida, p 203Google Scholar
  21. Manwell RD, Kuntz RE (1964) A new Babesia from the Indian Bandicoot. J Parasitol 50(3):390–393CrossRefGoogle Scholar
  22. Morand S, Jittapalapong S, Kosoy M (2015) Rodents as hosts of infectious diseases: biological and ecological characteristics. Vector-Borne Zoonotic Dis 15(1):1–2CrossRefGoogle Scholar
  23. Obiegala A, Pfeffer M, Pfister K, Karnath C, Silaghi C (2015) Molecular examinations of Babesia microti in rodents and rodent-attached ticks from urban and sylvatic habitats in Germany. Ticks Tick-Borne Dis 6(4):445–449CrossRefGoogle Scholar
  24. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14(9):817–818CrossRefGoogle Scholar
  25. Van Peenen PFD, Duncan JF (1968) Piroplasms (Protozoa: Sarcodina) of wild mammals in California. Bull Wildl Dis Assoc 4(1):3–8CrossRefGoogle Scholar
  26. Van Peenen PFD, Chang SJ, Banknieder AR, Santana FJ (1977) Piroplasms from Taiwanese rodents. J Protozool 24(2):310–312CrossRefGoogle Scholar
  27. Yabsley MJ, Shock BC (2013) Natural history of zoonotic Babesia: role of wildlife reservoirs. Int J Parasitol Parasites Wildl 2:18–31CrossRefGoogle Scholar

Copyright information

© Indian Society for Parasitology 2019

Authors and Affiliations

  1. 1.Department of Parasitology and MycologyLorestan University of Medical SciencesKhorramabadIran
  2. 2.Razi Herbal Medicines Research CenterLorestan University of Medical SciencesKhorramabadIran
  3. 3.Department of Epidemiology and Biostatistics, Research Center for Emerging and Reemerging Infectious DiseasesPasteur Institute of IranTehranIran
  4. 4.Student Research CommitteeLorestan University of Medical SciencesKhorramabadIran
  5. 5.Department of Plant Protection, Faculty of AgricultureLorestan UniversityKhorramabadIran

Personalised recommendations