Advertisement

Journal of Parasitic Diseases

, Volume 43, Issue 4, pp 739–742 | Cite as

In vitro efficacy of two terpenes against ancyrocephalid monogeneans from Nile tilapia

  • Francisco N. Morales-SernaEmail author
  • Víctor H. Caña-Bozada
  • Dania G. López-Moreno
  • Rosa M. Medina-Guerrero
  • José A. Morales-Serna
  • Emma J. Fajer-Ávila
Short Communication
  • 27 Downloads

Abstract

Terpenes are naturally produced compounds with a broad range of biological activities. Currently, there is limited information regarding the anthelminthic effect of terpenes against monogenean parasites of fish. The aim of this work was to evaluate the in vitro efficacy of two terpenes [α-terpinene and (+)-limonene oxide] against ancyrocephalid monogeneans found on farmed Nile tilapia (Oreochromis niloticus). (+)-Limonene oxide was more effective in killing these parasites than α-terpinene, with 86 and 90% mortality at concentrations of 36 and 55.4 mg/L, respectively, with a 5-h treatment. The estimated 5-h EC50 of (+)-limonene oxide was 4.8 mg/L. Even though this compound has the potential to be used as an anthelmintic compound in finfish aquaculture, before in vivo experiments are performed, additional studies are needed to find a more effective concentration, as well as to evaluate other terpenic compounds.

Keywords

Parasitic Platyhelminthes Control Treatment Essential oils Finfish aquaculture 

Notes

Author contributions

FNMS, EJFA, study design and manuscript writing; VHCB, DGLM, collection and analyses of data; RMMG, laboratory work; JAMS, contributed reagents, data analyses, and manuscript revision.

Funding

This research was funded by the National Council of Science and Technology of Mexico through the Grant FORDECYT 292474.

Compliance with ethical standards

Conflict of interest

The authors declares that they have no conflict of interest.

Ethical standards

The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national and institutional guides on the care and use of laboratory animals.

Data availability

All data generated or analyzed during this study are available from the corresponding author on reasonable request.

References

  1. Aguirre-Fey D, Benítez-Villa GE, Pérez-Ponce de León G, Rubio-Godoy M (2015) Population dynamics of Cichlidogyrus spp. and Scutogyrus sp. (Monogenea) infecting farmed tilapia in Veracruz, México. Aquaculture 443:11–15CrossRefGoogle Scholar
  2. Bader C, Chelladurai JJ, Starling DE, Jones DE, Brewer MT (2017) Assessment of in vitro killing assays for detecting praziquantel-induced death in Posthodiplostomun minimum metacercariae. Exp Parasitol 181:70–74CrossRefGoogle Scholar
  3. Baldissera MD, Grando TH, Souza CF, Gressler LT, Stefani LM, da Silva AS, Monteiro SG (2016) In vitro and in vivo action of terpinen-4-ol, γ-terpinene, and α-terpinene against Trypanosoma evansi. Exp Parasitol 162:43–48CrossRefGoogle Scholar
  4. CONAPESCA (2017) México entre los diez primeros lugares a nivel mundial en producción de tilapia: SAGARPA. https://www.gob.mx/conapesca/prensa/mexico-entre-los-diez-primeros-lugares-a-nivel-mundial-en-produccion-de-tilapia-sagarpa-103606?idiom=es. Accessed 12 April 2019
  5. De Moraes J, Carvalho AAL, Nakano E, de Almeida AAC, Marques THC, Andrade LN, de Freitas RM, de Sousa DP (2013) Anthelmintic activity of carvacryl acetate against Schistosoma mansoni. Parasitol Res 112:603–610CrossRefGoogle Scholar
  6. De Oliveira Hashimoto GS, Neto FM, Ruiz ML, Acchile M, Campos Chagas E, Maia Chaves FC, Martins ML (2016) Essential oils of Lippia sidoides and Mentha piperita against monogenean parasites and their influence on the hematology of Nile tilapia. Aquaculture 450:182–186CrossRefGoogle Scholar
  7. Ferrarini SR, Duarte MO, da Rosa RG, Rolim V, Eifler-Lima VL, von Poser G, Ribeiro VL (2008) Acaricidal activity of limonene, limonene oxide and beta-amino alcohol derivatives on Rhipicephalus (Boophilus) microplus. Vet Parasitol 157:149–153CrossRefGoogle Scholar
  8. Fox J (2005) The R commander: a basic-statistics graphical user interface to R. J Stat Soft 14:1–42Google Scholar
  9. Kayser O, Kiderlen AF, Croft SL (2003) Natural products as antiparasitic drugs. Parasitol Res 90:S55–62CrossRefGoogle Scholar
  10. Mafud AC, Silva MPN, Monteiro DC, Oliveira MF, Resende JG, Coelho ML, de Sousa DP, Mendonça RZ, Pinto PLS, Freitas RM, Mascarenhas YP, de Moraes J (2016) Structural parameters, molecular properties, and biological evaluation of some terpenes targeting Schistosoma mansoni parasite. Chem Biol Interact 244:129–139CrossRefGoogle Scholar
  11. Morales-Serna FN, Chapa-López M, Martínez-Brown JM, Ibarra-Castro L, Medina-Guerrero RM, Fajer-Ávila EJ (2018a) Efficacy of praziquantel and a combination anthelmintic (Adecto®) in bath treatments against Tagia ecuadori and Neobenedenia melleni (Monogenea), parasites of bullseye puffer fish. Aquaculture 492:361–368CrossRefGoogle Scholar
  12. Morales-Serna FN, Medina-Guerrero RM, Pimentel-Acosta C, Ramírez-Tirado JH, Fajer-Ávila EJ (2018b) Parasite infections in farmed nile tilapia Oreochromis niloticus in Sinaloa, Mexico. Comp Parasitol 85:212–217CrossRefGoogle Scholar
  13. Ogawa K (2015) Diseases of cultured marine fishes caused by Platyhelminthes (Monogenea, Digenea, Cestoda). Parasitology 142:178–195CrossRefGoogle Scholar
  14. Panic G, Flores D, Ingram-Sieber K, Keiser J (2015) Fluorescence/luminescence-based markers for the assessment of Schistosoma mansoni schistosomula drug assays. Parasites Vect 8:624CrossRefGoogle Scholar
  15. Paredes-Trujillo A, Velázquez-Abunader I, Torres-Irineo E, Romero D, Vidal-Martínez VM (2016) Geographical distribution of protozoan and metazoan parasites of farmed Nile tilapia Oreochromis niloticus (L.) (Perciformes: Cichlidae) in Yucatán, México. Parasites Vect 9:66CrossRefGoogle Scholar
  16. Schelkle B, Shinn AP, Peeler E, Cable J (2009) Treatment of gyrodactylid infections in fish. Dis Aquat Org 86:65–75CrossRefGoogle Scholar
  17. Thoney DA, Hargis WJ (1991) Monogenea (Platyhelminthes) as hazards for fish in confinement. Ann Rev Fish Dis 1:133–153CrossRefGoogle Scholar
  18. Zhang C, Li DL, Chi C, Ling F, Wang GX (2015) Dactylogyrus intermedius parasitism enhances Flavobacterium columnare invasion and alters immune-related gene expression in Carassius auratus. Dis Aquat Org 116:11–21CrossRefGoogle Scholar
  19. Zoral MA, Futami K, Endo M, Maita M, Katagiri T (2017) Anthelmintic activity of Rosmarinus officinalis against Dactylogyrus minutus (Monogenea) infections in Cyprinus carpio. Vet Parasitol 247:1–6CrossRefGoogle Scholar

Copyright information

© Indian Society for Parasitology 2019

Authors and Affiliations

  1. 1.CONACYT, Centro de Investigación en Alimentación y DesarrolloA.C. Unidad Mazatlán en Acuicultura y Manejo AmbientalMazatlánMexico
  2. 2.Centro de Investigación en Alimentación y DesarrolloA.C. Unidad Mazatlán en Acuicultura y Manejo AmbientalMazatlánMexico
  3. 3.Instituto de Química AplicadaUniversidad del PapaloapanTuxtepecMexico

Personalised recommendations