Advertisement

Effect of nanoparticles on the therapeutic efficacy of praziquantel against Schistosoma mansoni infection in murine models

  • Alaa Eldin M. Labib El Gendy
  • Faten Alsayed Mohammed
  • Sara A. Abdel-RahmanEmail author
  • Thanaa Ibrahim Ahmed Shalaby
  • Ghada M. Fathy
  • Samira Metwally Mohammad
  • Mahmoud A. El-Shafey
  • Nesma Atef Mohammed
Original Article
  • 41 Downloads

Abstract

Praziquantel (PZQ) is the main treatment of Schistosomiasis mansoni. However, resistance to it was described. So, there is a necessity to develop novel drugs or to enhance the present drugs. This work aimed to assess the efficacy of PZQ alone and when loaded on liposomes in treatment of S. mansoni infection by parasitological and histopathological studies in experimental murine models. 112 male laboratories bred Swiss Albino mice were used in this work. They were divided into four groups: Group 1: control group; Group 2: infected then treated by PZQ (500 mg/kg) at 7, 30 and 45 days post infection; Group 3: infected then treated by liposome encapsulated PZQ (lip.PZQ) (500 mg/kg) at 7, 30 and 45 days post infection; Group 4: infected then treated by free liposomes at 7, 30 and 45 days post infection. The results showed that G3 caused the highest significant reduction of the total worm count, eggs/gram liver tissue and intestine (97.2%, 99.3%, 99.5%) respectively. Followed by G2 (85.1%, 97.6%, 89.8%) respectively. Regarding the histopathological studies, G3 showed the highest significant reduction in number and diameter of hepatic granuloma (97.6% and 98.1%), followed by G2 (77.2% and 75%) when compared to other groups. In conclusion, lip.PZQ is more effective than free PZQ from all aspects especially when administered 45 days PI.

Keywords

Liposome encapsulated PZQ S. mansoni Nanoparticles 

Notes

Authors’ contribution

AEMLEG and FAM shared in the study design and research topics. SAA-R shared in the study design, in performing the laboratory work, wrote and reviewing the manuscript. TIAS shared in performing the laboratory work of this study. GMF, SMM, and NAM shared in the laboratory work, collecting references wrote and reviewed the manuscript and MAE-S shared in the laboratory work and interperation of the results.

Compliance with ethical standards

Conflict of interest

The authors declared that there is no conflict of interests.

References

  1. Adenowo A, Oyinloye B, Ogunyinka B, Kappo A (2015) Impact of human schistosomiasis in sub-Saharan Africa. Braz J Infect Dis 19(2):196–205CrossRefGoogle Scholar
  2. Aditya NP, Patankar S, Madhusudhan B, Murthy SR, Souto EB (2010) Arthemeter-loaded lipid nanoparticles produced by modified thin-film hydration: pharmacokinetics, toxicological and in vivo anti-malarial activity’. Eur J Pharm Sci 40(5):448–455CrossRefGoogle Scholar
  3. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:102CrossRefGoogle Scholar
  4. AL-Noshokaty TM, Aly I, Abo-elmatty DM, Mesbah NM, Shehata AS, Etewa S (2018) Evaluation of solid lipid nanoparticles loaded with praziquantel for treatment of schistosomiasis mansoni infected rats. Global Adv Res J Med Sci 7(9):2315–5159Google Scholar
  5. Ali SA, Manal AH (2006) Effect of Ailanthus altissima and Zizyphus spina Christi on bilharzial infestation in mice: histological and histopathological studies. J Appl Sci 6:1437–1446CrossRefGoogle Scholar
  6. Aloisio C, Antimisiaris SG, Longhi MR (2017) Liposomes containing cyclodextrins or meglumine to solubilize and improve the bioavailability of poorly soluble drugs. J Mol Liq 229:106–113CrossRefGoogle Scholar
  7. Alving CR (1986) Liposomes as drug carriers in leishmaniasis and malaria. Parasitol Today 2:101–107CrossRefGoogle Scholar
  8. Ammar HO, El-Ridy MS, Ghorab M, Ghorab MM (1994) Evaluation of the antischistosomal effect of praziquantel in a liposomal delivery system in mice. Int J Pharm 103:237–241CrossRefGoogle Scholar
  9. Andrade ZA, Cheever AW (1993) Characterization of the murine model of schistosomal hepatic periportal fibrosis (‘pipestem’fibrosis). Int J Exp Pathol 74:195Google Scholar
  10. Beshay EVN, Rady AA, Afifi AF, Mohamed AH (2018) Schistosomicidal, antifibrotic and antioxidant effects of Cucurbita pepo L. seed oil and praziquantel combined treatment for Schistosoma mansoni infection in a mouse model. J Helminthol 15:1–9CrossRefGoogle Scholar
  11. Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomed 10:975CrossRefGoogle Scholar
  12. Cheever AW (1968) Conditions affecting the accuracy of potassium hydroxide digestion techniques for counting Schistosoma mansoni eggs in tissues. Bull World Health Organ 39:328Google Scholar
  13. Cinto PO, Ribeiro Souza AL, Lima AC, Chaud MV, Gremião MPD (2009) LC evaluation of intestinal transport of praziquantel. Chromatographia 69:213CrossRefGoogle Scholar
  14. de Moraes J (2012) ‘Antischistosomal natural compounds: present challenges for new drug screens’, Current topics in tropical medicine, p. 335. ISBN: 978-953-51-0274-8, InTech Available from: http://www.Intechopen.com/books/current-topics-in-tropical-medicine/antischistosomal-naturalcompounds-present-challenges-for-new-drug-screens
  15. de Pádua Oliveira DC, de Barros ALB, Belardi RM, de Goes AM, de Oliveira Souza BK, Soares DCF (2016) Mesoporous silica nanoparticles as a potential vaccine adjuvant against Schistosoma mansoni. J Drug Deliv Sci Technol 35:234–240CrossRefGoogle Scholar
  16. de Souza ALR, Andreani T, De Oliveira RN, Kiill CP, dos Santos FK, Allegretti SM, Souto EB, Chaud MV, Silva AM, Gremião MPD (2014) In vitro evaluation of permeation, toxicity and effect of praziquantel-loaded solid lipid nanoparticles against Schistosoma mansoni as a strategy to improve efficacy of the schistosomiasis treatment. Int J Pharm 463:31–37CrossRefGoogle Scholar
  17. Della Pepa ME, Martora F, FinamoreE Vitiello M, GaldieroM Franci G (2017) Role of nanoparticles in treatment of human parasites. Nanotechnology applied to pharmaceutical technology. Springer, Cham, pp 307–333CrossRefGoogle Scholar
  18. Dkhil MA, Bauomy AA, Diab MSM, Al-Quraishy S (2015) Antioxidant and hepatoprotective role of gold nanoparticles against murine hepatic schistosomiasis. Int J Nanomed 10:7467Google Scholar
  19. Dömling A, Khoury K (2010) Praziquantel and schistosomiasis. ChemMedChem 5:1420–1434CrossRefGoogle Scholar
  20. Duvall RH, DeWitt WB (1967) An improved perfusion technique for recovering adult schistosomes from laboratory animals. Am J Trop Med Hyg 16:483–486CrossRefGoogle Scholar
  21. El-Feky GS, Mohamed WS, Nasr HE, El-Lakkany NM, el-Din SHS, Botros SS (2015) Praziquantel in clay nanoformualtion showed more bioavailability and higher efficacy in murine Schistosomiasis mansoni. Antimicrob Agents Chemother 59(6):3501–3508CrossRefGoogle Scholar
  22. El-Refai SA, Atia AF, Mahmoud SF (2018)’Effects of Callistemon citrinus aqueous extract on prepatent and patent infections with Schistosoma mansoni in experimentally infected mice’, Journal of helminthology, 1-10.Google Scholar
  23. Frezza TF, Gremião MPD, Zanotti-Magalhães EM, Magalhães LA, de Souza ALR, Allegretti SM (2013) Liposomal-praziquantel: efficacy against Schistosoma mansoni in a preclinical assay. Acta Trop 128:70–75CrossRefGoogle Scholar
  24. Frezza TF, de Souza ALR, Prado CCR, de Oliveira CNF, Gremião MPD, Giorgio S, Dolder MAH, Joazeiro PP, Allegretti SM (2015) Effectiveness of hyperbaric oxygen for experimental treatment of schistosomiasis mansoni using praziquantel-free and encapsulated into liposomes: assay in adult worms and oviposition. Acta Trop 150:182–189CrossRefGoogle Scholar
  25. Gazzinelli MF, Lobato L, Andrade G, Matoso LF, Diemert DJ, Gazzinelli A (2016) Improving the understanding of schistosomiasis among adolescents in endemic areas in Brazil: a comparison of educational methods. Patient Educ Couns 99:1657–1662CrossRefGoogle Scholar
  26. Geary TG (2012) Are new anthelmintics needed to eliminate human helminthiases? Curr Opin Infect Dis 25:709–717CrossRefGoogle Scholar
  27. Gönnert R, Andrews P (1977) Praziquantel, a new broad-spectrum antischistosomal agent. Zeitschrift für Parasitenkunde 52:129–150CrossRefGoogle Scholar
  28. Hrčková G, Velebny S (1997) Effect of praziquantel and liposome-incorporated praziquantel on peritoneal macrophage activation in mice infected with Mesocestoides corti tetrathyridia (Cestoda). Parasitology 114:475–482CrossRefGoogle Scholar
  29. Katz N, Coelho PMZ (2008) Clinical therapy of schistosomiasis mansoni: the Brazilian contribution. Acta Trop 108:72–78CrossRefGoogle Scholar
  30. Kolenyak-Santos F, Garnero C, de Oliveira RN, De Souza AL, Chorilli C, Allegretti SM, Longhi MR, Chaud MV, Gremião MP (2014) Nanostructured lipid carriers as a strategy to improve the in vitro schistosomiasis activity of praziquantel. J Nanosci Nanotechnol 14:1–12CrossRefGoogle Scholar
  31. Kuntz E (1989) Pilot-study with polyenylphosphatidylcholine in severe liver insufficiency. Medizinische Welt 40:1327–1329Google Scholar
  32. Légaré D, Ouellette M (2017) Drug resistance assays for parasitic diseases. Antimicrobial drug resistance. Springer, Cham, pp 1409–1463CrossRefGoogle Scholar
  33. Liang YS, Bruce JI, Boyd DA (1987) Laboratory cultivation of schistosome vector snails and maintenance of schistosome life cycles. In: Proceeding of the 1st Sino-American symposium vol 1, pp 34–48Google Scholar
  34. Mourão SC, Costa PI, Salgado HRN, Gremião MPD (2005) Improvement of antischistosomal activity of praziquantel by incorporation into phosphatidylcholine-containing liposomes. Int J Pharm 295:157–162CrossRefGoogle Scholar
  35. Pardun H (1988) ‘Die Pflanzenlecithine. Verlag fiir die chemiscbe Industrie H. Ziolkowsky’, Augsburg, pp 326–413Google Scholar
  36. Parnham M, Wetzig H (1993) Toxicity screening of liposomes. Chem Phys Lipid 64(1–3):263–274CrossRefGoogle Scholar
  37. Pattni BS, Chupin VV, Torchilin VP (2015) New developments in liposomal drug delivery. Chem Rev 115:10938–10966CrossRefGoogle Scholar
  38. Peters PA, Warren KS (1969) A rapid method of infecting mice and other laboratory animals with Schistosoma mansoni: subcutaneous injection. J Parasitol 55(3):558–561CrossRefGoogle Scholar
  39. Porter CJ, Pouton CW, Cuine JF, Charman WN (2008) Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev 60(6):673–691CrossRefGoogle Scholar
  40. Romeih MH, Hassan HM, Shousha TSA, Saber MA (2008) Immunization against Egyptian Schistosoma mansoni infection by multivalent DNA vaccine. Acta Biochim Biophys Sin 40(4):327–338CrossRefGoogle Scholar
  41. Shaw MK, Erasmus DA (1988) Schistosoma mansoni: praziquantel-induced changes to the female reproductive system. Exp Parasitol 65:31–42CrossRefGoogle Scholar
  42. Sobhy MMK, Mahmoud SS, El-Sayed SH, RizkE MA, Raafat A, Negm MSI (2018) Impact of treatment with a protein tyrosine kinase inhibitor (Genistein) on acute and chronic experimental Schistosoma mansoni infection. Exp Parasitol 185:115–123CrossRefGoogle Scholar
  43. Thétiot-Laurent SA, Boissier J, Robert A, Meunier B (2013) Schistosomiasis chemotherapy. Angewandte Chem Int 52:7936–7956CrossRefGoogle Scholar
  44. Varona S, Martín A, Cocero MJ (2011) Liposomal incorporation of lavand in essential oil by a thin-film hydration method and by particles from gas-saturated solutions. Ind Eng Chem Res 50:2088–2097CrossRefGoogle Scholar
  45. Venkateswarlu V, Manjunath K (2004) Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J Control Release 95(3):627–638CrossRefGoogle Scholar
  46. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, Shibuya K, Salomon JA et al (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2163–2196CrossRefGoogle Scholar
  47. Warren KS, Domingo EO, Cowan RB (1967) Granuloma formation around schistosome eggs as a manifestation of delayed hypersensitivity. Am J Pathol 51:735Google Scholar
  48. WHO (2017) Schistosomiasis retrieved on June 20, 2017. http://www.who.int/mediacenter/factsheets/fs115/en/
  49. WHO Media centre (2014) Schistosomiasis. Factsheet N°115Google Scholar
  50. Xiao SH, Catto BA, Webster LT (1985) Effects of praziquantel on different developmental stages of Schistosoma mansoni in vitro and in vivo’. J Infect Dis 151(6):1130–1137CrossRefGoogle Scholar

Copyright information

© Indian Society for Parasitology 2019

Authors and Affiliations

  • Alaa Eldin M. Labib El Gendy
    • 1
  • Faten Alsayed Mohammed
    • 1
  • Sara A. Abdel-Rahman
    • 1
    Email author
  • Thanaa Ibrahim Ahmed Shalaby
    • 2
  • Ghada M. Fathy
    • 1
  • Samira Metwally Mohammad
    • 1
  • Mahmoud A. El-Shafey
    • 3
  • Nesma Atef Mohammed
    • 1
  1. 1.Medical Parasitology Department, Faculty of MedicineZagazig UniversityZagazigEgypt
  2. 2.Medical Research InstituteAlexandria UniversityAlexandriaEgypt
  3. 3.Clinical Pathology Department, Faculty of MedicineZagazig UniversityZagazigEgypt

Personalised recommendations