TREM-1 modulation produces positive outcome on the histopathology and cytokines release profile of Plasmodium berghei-infected mice

  • Voon Kin Chin
  • Afiq Mohd Yusof Asyran
  • Zainul Amiruddin Zakaria
  • Wan Omar Abdullah
  • Pei Pei Chong
  • Norshariza Nordin
  • Zaid Osamah Ibraheem
  • Roslaini Abdul Majid
  • Rusliza Basir
Original Article


Triggering receptor expressed on myeloid cells 1 (TREM-1) is a potential molecular therapeutic target for various inflammatory diseases. Despite that, the role of TREM-1 during malaria pathogenesis remains obscure with present literature suggesting a link between TREM-1 with severe malaria development. Therefore, this study aims to investigate the role of TREM-1 and TREM-1 related drugs during severe malaria infection in Plasmodium berghei-infected mice model. Our findings revealed that TREM-1 concentration was significantly increased throughout the infection periods and TREM-1 was positively correlated with malaria parasitemia development. This suggests a positive involvement of TREM-1 in severe malaria development. Meanwhile, blocking of TREM-1 activation using rmTREM-1/Fc and TREM-1 clearance by mTREM-1/Ab had significantly reduced malaria parasitemia and suppressed the production of pro- inflammatory cytokines (TNF-α, IL-6 and IFN-γ) and anti-inflammatory cytokine (IL-10). Furthermore, histopathological analysis of TREM-1 related drug treatments, in particular rmTREM-1/Fc showed significant improvements in the histological conditions of major organs (kidneys, spleen, lungs, liver and brain) of Plasmodium berghei-infected mice. This study showed that modulation of TREM-1 released during malaria infection produces a positive outcome on malaria infection through inhibition of pro-inflammatory cytokines secretion and alleviation of histopathological conditions of affected organs. Nevertheless, further investigation on its optimal dosage and dose dependant study should be carried out to maximise its full potential as immunomodulatory or as an adjuvant in line with current antimalarial agents.


TREM-1 Experimental malaria infection Cytokines Histopathology TREM-1 modulation 



We would like to acknowledge Universiti Putra Malaysia, Malaysia and Ministry of Education, Malaysia under Fundamental Research Grant Scheme (FRGS) (04-11-08-629FR) for providing financial and infrastructure support for the conduction of the research study.

Author contributions

AAMY conducted the experiments and analyzed the data in this study. CVK analyzed the data, wrote and revised the manuscript. RB conceptualized the idea and experimental design in this study. RB, WOA, CPP, NN, ZOI and RAM provide technical supports in the experiments and revised the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Achtman AH, Pilat S, Law CW, Lynn DJ, Janot L, Mayer ML, Ma S, Kindrachuk J, Finlay BB, Brinkman FS, Smyth GK (2012) Effective adjunctive therapy by an innate defense regulatory peptide in a preclinical model of severe malaria. Sci Transl Med 4(135):135ra64CrossRefGoogle Scholar
  2. Adukpo S, Gyan BA, Ofori MF, Dodoo D, Velavan TP, Meyer CG (2016) Triggering receptor expressed on myeloid cells 1 (TREM-1) and cytokine gene variants in complicated and uncomplicated malaria. Trop Med Int Health 21(12):1592–1601CrossRefGoogle Scholar
  3. Baheti R, Laddha P, Gehlot RS (2003) Liver involvement in falciparum malaria—a histo-pathological analysis. J Indian Acad Clin Med 4(1):34–38Google Scholar
  4. Basir R, Rahiman SF, Hasballah K, Chong WC, Talib H, Yam MF, Jabbarzare M, Tie TH, Othman F, Moklas MA, Abdullah WO (2012) Plasmodium berghei ANKA infection in ICR mice as a model of cerebral malaria. Iran J Parasitol 7(4):62PubMedPubMedCentralGoogle Scholar
  5. Bouchon A, Dietrich J, Colonna M (2000) Inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol 164:4991–4995CrossRefGoogle Scholar
  6. Bouchon A, Facchetti F, Weigand MA, Colonna M (2001a) TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 410:1103–1107CrossRefGoogle Scholar
  7. Bouchon A, Hernández-Munain C, Cella M, Colonna M (2001b) A DAP12-mediated pathway regulates expression of CC chemokine receptor 7 and maturation of human dendritic cells. J Exp Med 194(8):1111–1122CrossRefGoogle Scholar
  8. Buffet PA, Safeukui I, Deplaine G, Brousse V, Prendki V, Thellier M, Turner GD, Mercereau-Puijalon O (2011) The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology. Blood 117(2):381–392CrossRefGoogle Scholar
  9. Carroll RW, Wainwright MS, Kim KY, Kidambi T, Gomez ND, Taylor T, Haldar K (2010) A rapid murine coma and behavior scale for quantitative assessment of murine cerebral malaria. PloS One 5(10):e13124CrossRefGoogle Scholar
  10. Chimma P, Roussilhon C, Sratongno P, Ruangveerayuth R, Pattanapanyasat K, Pérignon JL, Roberts DJ, Druilhe P (2009) A distinct peripheral blood monocyte phenotype is associated with parasite inhibitory activity in acute uncomplicated Plasmodium falciparum malaria. PLoS Pathog 5(10):e1000631CrossRefGoogle Scholar
  11. Clark IA, Schofield L (2000) Pathogenesis of malaria. Parasitol Today 16(10):451–454CrossRefGoogle Scholar
  12. Dodoo D, Omer FM, Todd J, Akanmori BD, Koram KA, Riley EM (2002) Absolute levels and ratios of proinflammatory and anti-inflammatory cytokine production in vitro predict clinical immunity to Plasmodium falciparum malaria. J Infect Dis 185(7):971–979CrossRefGoogle Scholar
  13. Dondorp AM (2005) Pathophysiology, clinical presentation and treatment of cerebral malaria. Neurol Asia 10:67–77Google Scholar
  14. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ, Ringwald P (2009) Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361(5):455–467CrossRefGoogle Scholar
  15. Dower K, Ellis DK, Saraf K, Jelinsky SA, Lin LL (2008) Innate immune responses to TREM-1 activation: overlap, divergence, and positive and negative cross-talk with bacterial lipopolysaccharide. J Immunol 180:3520–3534CrossRefGoogle Scholar
  16. Elias RM, Correa-Costa M, Barreto CR, Silva RC, Hayashida CY, Castoldi A, Goncalves GM, Braga TT, Barboza R, Rios FJ, Keller AC (2012) Oxidative stress and modification of renal vascular permeability are associated with acute kidney injury during P. berghei ANKA infection. PLoS ONE 7(8):e44004CrossRefGoogle Scholar
  17. Erdman LK, Dhabangi A, Musoke C, Conroy AL, Hawkes M, Higgins S, Rajwans N, Wolofsky KT, Streiner DL, Liles WC, Cserti-Gazdewich CM (2011) Combinations of host biomarkers predict mortality among Ugandan children with severe malaria: a retrospective case-control study. PLoS ONE 6(2):e17440CrossRefGoogle Scholar
  18. Ford JW, McVicar DW (2009) TREM and TREM-like receptors in inflammation and disease. Curr Opin Immunol 21(1):38–46CrossRefGoogle Scholar
  19. Gibot S, Kolopp-Sarda MN, Béné MC, Bollaert PE, Lozniewski A, Mory F, Levy B, Faure GC (2004) A soluble form of the triggering receptor expressed on myeloid cells-1 modulates the inflammatory response in murine sepsis. J Exp Med 200(11):1419–1426CrossRefGoogle Scholar
  20. Gibot S, Buonsanti C, Massin F, Romano M, Kolopp-Sarda MN, Benigni F, Faure GC, Béné MC, Panina-Bordignon P, Passini N, Lévy B (2006) Modulation of the triggering receptor expressed on the myeloid cell type 1 pathway in murine septic shock. Infect Immun 74(5):2823–2830CrossRefGoogle Scholar
  21. Horst SA, Linnér A, Beineke A, Lehne S, Höltje C, Hecht A, Norrby-Teglund A, Medina E, Goldmann O (2013) Prognostic value and therapeutic potential of TREM-1 in Streptococcus pyogenes-induced sepsis. J Innate Immun 5(6):581–590CrossRefGoogle Scholar
  22. Jason J, Archibald LK, Nwanyanwu OC, Bell M, Buchanan I, Larned J, Kazembe PN, Dobbie H, Parekh B, Byrd MG, Eick A (2001) Cytokines and malaria parasitemia. Clin Immunol 100(2):208–218CrossRefGoogle Scholar
  23. Lamikanra AA, Theron M, Kooij TW, Roberts DJ (2009) Hemozoin (malarial pigment) directly promotes apoptosis of erythroid precursors. PLoS ONE 4(12):e8446CrossRefGoogle Scholar
  24. Lou J, Lucas R, Grau GE (2001) Pathogenesis of cerebral malaria: recent experimental data and possible applications for humans. Clin Microbiol Rev 14(4):810–820CrossRefGoogle Scholar
  25. Lovegrove FE, Gharib SA, Peña-Castillo L, Patel SN, Ruzinski JT, Hughes TR, Liles WC, Kain KC (2008) Parasite burden and CD36-mediated sequestration are determinants of acute lung injury in an experimental malaria model. PLoS Pathog 4(5):e1000068CrossRefGoogle Scholar
  26. Malaguarnera L, Musumeci S (2002) The immune response to Plasmodium falciparum malaria. Lancet Infect Dis 2(8):472–478CrossRefGoogle Scholar
  27. Miller LH, Baruch DI, Marsh K, Doumbo OK (2002) The pathogenic basis of malaria. Nature 415(6872):673CrossRefGoogle Scholar
  28. Nobes MS, Ghabrial H, Simms KM, Smallwood RA, Morgan DJ, Sewell RB (2002) Hepatic Kupffer cell phagocytotic function in rats with erythrocytic-stage malaria. J Gastroenterol Hepatol 17(5):598–605CrossRefGoogle Scholar
  29. Poe JC, Wagner DH, Miller RW, Stout RD, Suttles J (1997) IL-4 and IL-10 modulation of CD40-mediated signaling of monocyte IL-1beta synthesis and rescue from apoptosis. J Immunol 159(2):846–852PubMedGoogle Scholar
  30. Pongponratn E, Riganti M, Bunnag D, Harinasuta T (1987) Spleen in falciparum malaria: ultrastructural study. Southeast Asian J Trop Med Public Health 18(4):491–501PubMedGoogle Scholar
  31. Ponsford MJ, Medana IM, Prapansilp P, Hien TT, Lee SJ, Dondorp AM, Esiri MM, Day NP, White NJ, Turner GD (2011) Sequestration and microvascular congestion are associated with coma in human cerebral malaria. J Infect Dis 205(4):663–671CrossRefGoogle Scholar
  32. Pradel G, Frevert U (2001) Malaria sporozoites actively enter and pass through rat Kupffer cells prior to hepatocyte invasion. Hepatology 33(5):1154–1165CrossRefGoogle Scholar
  33. Rivera N, Romero SE, Menchaca Á, Zepeda A, García LE, Salas G, Romero L, Malagón F (2013) Blackwater fever like in murine malaria. Parasitol Res 112(3):1021–1029CrossRefGoogle Scholar
  34. Rupani AB, Amarapurkar AD (2009) Hepatic changes in fatal malaria: an emerging problem. Ann Trop Med Parasitol 103(2):119–127CrossRefGoogle Scholar
  35. Singh R, Kaur M, Arora DA (2010) Prospective study of hepatic involvement in Plasmodium falciparum malaria. J Clin Diagn Res 4(2):2190–2197Google Scholar
  36. Sturm A, Amino R, Van de Sand C, Regen T, Retzlaff S, Rennenberg A, Krueger A, Pollok JM, Menard R, Heussler VT (2006) Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science 313(5791):1287–1290CrossRefGoogle Scholar
  37. Tammaro A, Derive M, Gibot S, Leemans JC, Florquin S, Dessing MC (2017) TREM-1 and its potential ligands in non-infectious diseases: from biology to clinical perspectives. Pharmacol Ther 177:81–95CrossRefGoogle Scholar
  38. Taylor WR, Hanson J, Turner GD, White NJ, Dondorp AM (2012) Respiratory manifestations of malaria. Chest 142(2):492–505CrossRefGoogle Scholar
  39. Urban BC, Ferguson DJ, Pain A, Willcox N, Plebanski M, Austyn JM, Roberts DJ (1999) Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 400(6739):73CrossRefGoogle Scholar
  40. Valecha N, Pinto RG, Turner GD, Kumar A, Rodrigues S, Dubhashi NG, Rodrigues E, Banaulikar SS, Singh R, Dash AP, Baird JK (2009) Histopathology of fatal respiratory distress caused by Plasmodium vivax malaria. Am J Trop Med Hyg 81(5):758–762CrossRefGoogle Scholar
  41. Wang F, Liu S, Wu S, Zhu Q, Ou G, Liu C, Wang Y, Liao Y, Sun Z (2012) Blocking TREM-1 signaling prolongs survival of mice with Pseudomonas aeruginosa induced sepsis. Cell Immunol 272(2):251–258CrossRefGoogle Scholar
  42. Warrell DA, Gilles HM (2002) Essential malariology, 4th edn. Arnold, London, pp 8–20Google Scholar
  43. WHO (2016) World malaria report 2016. World Health Organization, GenevaGoogle Scholar
  44. Yang C, Chen B, Zhao J, Lin L, Han L, Pan S, Fu L, Jin M, Chen H, Zhang A (2015) TREM-1 signaling promotes host defense during the early stage of infection with the highly pathogenic Streptococcus suis. Infect Immun 83:3293–3301CrossRefGoogle Scholar

Copyright information

© Indian Society for Parasitology 2018

Authors and Affiliations

  • Voon Kin Chin
    • 2
  • Afiq Mohd Yusof Asyran
    • 1
  • Zainul Amiruddin Zakaria
    • 4
  • Wan Omar Abdullah
    • 5
  • Pei Pei Chong
    • 2
  • Norshariza Nordin
    • 4
  • Zaid Osamah Ibraheem
    • 1
  • Roslaini Abdul Majid
    • 3
  • Rusliza Basir
    • 1
  1. 1.Pharmacology Unit, Department of Human Anatomy, Faculty of Medicine and Health SciencesUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.School of Biosciences, Faculty of Health and Medical SciencesTaylor’s UniversitySubang JayaMalaysia
  3. 3.Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health SciencesUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.Department of Biomedical Science, Faculty of Medicine and Health SciencesUniversiti Putra MalaysiaSerdangMalaysia
  5. 5.Department of Medical Sciences, Faculty of Medicine and Health SciencesUniversiti Sains Islam MalaysiaPandan IndahMalaysia

Personalised recommendations