Advertisement

Journal of Parasitic Diseases

, Volume 40, Issue 3, pp 971–975 | Cite as

First record of protozoan parasites, Tetrahymena rostrata and Callimastix equi from the edible oyster in Sundarbans region of West Bengal, India

  • Tanima Biswas
  • Probir Kumar Bandyopadhyay
Original Article

Abstract

Several protozoan parasites have been found infecting the edible oysters, hence deteriorating the meat quality. Protozoan parasites such as, Tetrahymena rostrata and Callimastix equi infested the edible oyster in Sundarbans region, West Bengal, India, are first record from this region. Due to filter feeding habit of the organisms, oysters provides excellent ecological services in regard to efficient cleaning of infectious agents from surrounding water as a potential measure to improve water quality. However, these environmental benefits are associated with public heath risks from contaminated oysters intended for human consumption.

Keywords

Tetrahymena rostrata Callimastix equi Protozoan parasite Edible oyster West Bengal 

Notes

Acknowledgments

One of the authors (TB) is thankful to the University of Kalyani for financial support in the form of a research scholarship to carry out this work. Sincere thanks are also due to Dr. Nelendu Jyoti Moitra and Avay Haldar of Ramkrishna Ashram Krishi Vigyan Kendra, Nimpith,South 24 Parganas, W.B. for their active cooperation.

References

  1. Andrews JD, Wood JL (1967) Oyster mortality studies in Virginia. VI. History and distribution of Minchinia nelsoni, a pathogen of oysters, in Virginia. Chesap Sci 8:1–13CrossRefGoogle Scholar
  2. Biswas T, Bandyopadhyay PK (2013a) First record of the genus Cryptosporidium sp. (Apicomplexa: Eucoccidiorida: Cryptosporidiidae) from the edible oyster in Sundarbans region, West Bengal, India. Proc Nat Conf Chal Bio Res Manag 189–193Google Scholar
  3. Biswas T, Bandyopadhyay PK (2013b) Prevalence of a protozoan parasite Cristigera sp. (Ciliophora:Ciliatea) from edible oysters (Mollusca:Bivalvia) of Sundarbans, West Bengal, India. J Parasit Dis. doi  10.1007/s12639-012-0230-0
  4. Biswas T, Molla SH, Bandyopadhyay PK (2011) On the occurrence of a protozoan parasite from edible oysters of Sunderbans region of West Bengal. Proc 22nd Nat Cong Parasitol 315–318Google Scholar
  5. Biswas T, Bandyopadhyay PK, Chatterjee SN (2013) Accumulation of cadmium, copper, lead, zinc and iron in the edible oyster, Saccostrea cucullata in coastal areas of West Bengal. Afr J Biotechnol 12(24):3872–3877Google Scholar
  6. Bower SM, McGladdery SE, Price IM (1994) Synopsis of infectious diseases and parasites of commercially exploited shellfish. Annu Rev Fish Dis 4:1–200CrossRefGoogle Scholar
  7. Brooks WM (1968) Tetrahymenid ciliates as parasites of the gray garden slug. Hilgardia 39:205–276CrossRefGoogle Scholar
  8. Burreson EM, Ragone-Calvo LM (1996) Epizootiology of Perkinsus marinus disease of oysters in Chesapeake Bay, with emphasis on data since 1985. J Shellfish Res 15:17–34Google Scholar
  9. Bushek D, Ford SE, Allen SK (1994) Evaluation of methods using Ray’s fluid thioglycollate medium for the diagnosis of Perkinsus marinus infection in the eastern oyster, Crassostrea virginica. Annu Rev Fish Dis 4:210–217CrossRefGoogle Scholar
  10. Cleaveland S, Hess GR, Dobson AP, Laurenson KM, McCallum HI, Roberts MG, Woodroffe R (2002) The role of pathogens in biological conservation. In: Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP et al (eds) The ecology of wildlife diseases. Oxford University Press, Oxford, pp 139–150Google Scholar
  11. Combes C (1991) Ethological aspects of parasite transmission. Am Nat 138:866–880CrossRefGoogle Scholar
  12. Corliss JO (1952) Le cycle autogamique de Tetrahymena rostrata. C R Acad Sci 235:399–402Google Scholar
  13. Culloty SC, Cronin MA, Mulcahy MF (2003) Possible limitations of diagnostic methods recommended for the detection of the protistan, Bonamia ostrae in the European flat oyster, Ostrea edulis. Bull Eur Assoc Fish Pathol 23:67–71Google Scholar
  14. Dogiel VA (1964) General parasitology. Oliver and Boyd, EdinburghGoogle Scholar
  15. Durve VS (1964) On the percentage edibility and the index of condition of the oyster Crassostrea gryphoides (Schlotheim). J Mar Biol Assoc India 6(1):128–135Google Scholar
  16. Earle M, Uzzell E, Ruffin JJ, Becker RB (1950) Rumen protozoa in florida dairy cattle. Am Midl Nat 43(2):480–483CrossRefGoogle Scholar
  17. Ford SE, Tripp ME (1996) Diseases and defense mechanisms. In: Kennedy VS, Newell RIE, Eble AF (eds) The Eastern Oyster Crassostrea virginica. Maryland Sea Grant, College Park, Maryland, pp 581–660Google Scholar
  18. Galvani AP (2003) Epidemiology meets evolutionary ecology. Trends Ecol Evol 18:132–139CrossRefGoogle Scholar
  19. Hauschka TS, Doll RB (1944) Paraglaucoma sp., a facultative parasite of coelenterates. J Parasitol 30(3):198–199CrossRefGoogle Scholar
  20. Hsiung TS (1929) A survey of the protozoan fauna of the large intestine of the horse. Soc Proc J Parasitol 16(2):96–108Google Scholar
  21. Kahl A (1926) Neue und wenig bekannte formen der holotrichen und heterotrichen ciliaten. Arch Protistenkd 55:197–438Google Scholar
  22. Kinne O (1983) Diseases of marine animals. Biologische Anstalt Helgoland, HamburgGoogle Scholar
  23. Korringa P (1976) Farming of the Cupped oyster of the genus Crassostrea. Elsevier Sc Pub Co, New York, pp 1–123Google Scholar
  24. Kozloff EN (1957) A species of Tetrahymena parasitic in the renal organ of the slug Deroceras reticulatum. J Eukaryo Microbiol 4:75–79Google Scholar
  25. Lafferty KD, Kuris AM (1993) Mass mortality of abalone Haliotis cracherodii on the California channel Islands: tests of epidemiological hypothesis. Mar Ecol Prog Ser 96:239–248CrossRefGoogle Scholar
  26. Poulin R (1998) Evolutionary ecology of parasites. Chapman and Hall, LondonGoogle Scholar
  27. Real LA (1996) Sustainability and the ecology of infectious disease. Bioscience 46:88–97CrossRefGoogle Scholar
  28. Schall JJ, Pearson AR (2000) Body condition of a Puerto Rican anole, Anolis gundlachi: effect of a malaria parasite and weather variation. J Herpetol 34:489–491CrossRefGoogle Scholar
  29. Stokes NA, Siddall ME, Burreson EM (1995) Detection of Haplosporidium nelsoni (Haplospodidia: Haplosporidiidae) in oysters by PCR amplification. Dis Aquat Org 23:145–152CrossRefGoogle Scholar
  30. Stout JD (1954) The ecology, life history and parasitism of Tetrahymena (Paraglaucoma) rostrata (Kahl) Corliss. J Protozool 1:211–215CrossRefGoogle Scholar
  31. Stout JD (1958) Biological studies of some tussock grassland soils. N Z J Agricul Res 1:974–984CrossRefGoogle Scholar
  32. Thomas F, Mete K, Helluy S, Santalla F, Verneau O, de Meefs T, Cezilly F, Renaud F (1997) Hitch-hiker parasites or how to benefit from the strategy of another parasite. Evolution 51:1316–1318CrossRefPubMedGoogle Scholar
  33. Trollope DR (1984) Use of molluscs to monitor bacteria in water. In: Grainger JM, Lynch JM (eds) Microbiological methods for environmental biotechnology. Society for applied bacteriology technical series number 19. Acad Press, London, pp 393–409Google Scholar
  34. Vavra J, Joyon L (1966) Egtude sur la morphologie le cycle evolutif et la position systematique de Callimastix cyclopis Weissenberg 1912. Protistologica 2:5–13Google Scholar
  35. Weissenberg R (1912) Callimastix cyclopis, n. g., n. sp., ein geisseltragendes Protozoon aus dem Serum von Cyclops. Sitzungsber Ges Naturfr Freunde 5:299–305Google Scholar
  36. Weissenberg R (1950) The development and affinities of Callimastix cyclopis Weissenberg, a parasitic microorganism from the serum of Cyclops. Proc Amer Soc Protozool 1:4–5Google Scholar
  37. Whisler HC, Shemanchuk JA, Travland LB (1972) Germination of the resistant sporangia of Coelomomyces psorophorae. J Invertebr Pathol 19:139–147CrossRefGoogle Scholar

Copyright information

© Indian Society for Parasitology 2014

Authors and Affiliations

  1. 1.Parasitology Laboratory, Department of ZoologyUniversity of KalyaniKalyaniIndia

Personalised recommendations