Journal of Parasitic Diseases

, Volume 40, Issue 3, pp 611–626 | Cite as

The effect of chitosan nanospheres on the immunogenicity of Toxoplasma lysate vaccine in mice

  • Mona M. El Temsahy
  • Eman D. H. El Kerdany
  • Maha M. EissaEmail author
  • Thanaa I. Shalaby
  • Iman M. Talaat
  • Nermine M. F. H. Mogahed
Original Article


Toxoplasmosis, a zoonotic parasitic disease, is a huge challenge for which there is no effective vaccine up till now. In this study, chitosan nanospheres encapsulated with Toxoplasma lysate vaccine was evaluated for its ability to protect mice against both acute and chronic toxoplasmosis models of infection. Results showed that chitosan nanospheres were equally effective to Freund’s incomplete adjuvant (FIA) in enhancing the efficacy of Toxoplasma lysate vaccine. The effectiveness was demonstrated by the delayed death of vaccinated mice following challenge either with virulent RH or avirulent Me49 strains, the significant decrease in parasite density in different organs, significant increase in the humoral and cellular immune response (IgG and IFN γ) with a marked reduction of pathological changes in the different organs. However chitosan nanospheres were superior to FIA due to their cost effective preparation and much less necrotic changes induced in the studied organs. The success of chitosan polymer as an alternative to commonly used adjuvants paves the way for the use of other newly developed polymers to be used in the field of vaccine development.


Crude Toxoplasma lysate vaccine Virulent RH Toxoplasma strain Avirulent Me49 Toxoplasma strain Encapsulated chitosan nanospheres 



We are grateful to Professor Ashraf Brakat, Department of Epidemiology and Zoonotic Diseases, National Research Center, Doki, Giza, Egypt for providing the avirulent Me49 Toxoplasma strain. Special thanks to Professor Rafaat Shaban, Epidemiology and Zoonotic Diseases, National Research Center, Doki and Dr. Mona Mohamed Tolba, Lecturer in Medical Research Institute for their assistance in ELISA technique. The technical support of Mrs. Neamat Ahmed Hassan is greatly appreciated.

Conflict of interests

We declare that the authors have no conflict of interest.


  1. Abu-Madi AM, Al-Molawi N, Behnke MJ (2008) Seroprevalence and epidemiological correlates of Toxoplasma gondii infections among patients referred for hospital-based serological testing in Doha, Qatar. Parasites Vectors 1:3–9CrossRefGoogle Scholar
  2. Angus CW, Klivington-Evans D, Dubey JP, Kovacs JA (2000) Immunization with a DNA plasmid encoding the SAG1 (P30) protein of Toxoplasma gondii is immunogenic and protective in rodents. J Infect Dis 181:317–324CrossRefPubMedGoogle Scholar
  3. Araujo FG, Phillippe P, Teri L, Remington SJ (1992) Activity of clarithromycin alone or in combination with other drugs for treatment of murine toxoplasmosis. Antimicrob Agent Chemother 36(11):2454–2457CrossRefGoogle Scholar
  4. Bakal PM, Veld N (1979) Response of white mice to inoculation of irradiated organisms of the Toxoplasma strain RH. Z Parasitenkd 59:211–217CrossRefPubMedGoogle Scholar
  5. Black MW, Boothroyd JC (2000) Lytic cycle of Toxoplasma gondii. Microbiol Mol Biol Rev 64:607–623CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cambridge CD, Singh SR, Waffo AB, Fairley SJ, Dennis VA (2013) Formulation, characterization, and expression of a recombinant MOMP Chlamydia trachomatis DNA vaccine encapsulated in chitosan nanoparticles. Int J Nanomed 8:1759–1771Google Scholar
  7. Chan YH (2003) Biostatistics 102: quantitative data—parametric & non-parametric tests. Singap Med J 44(8):391–396Google Scholar
  8. Chuang SC, Ko JC, Chen CP, Du JT, Yang CD (2013) Induction of long lasting protective immunity against Toxoplasma gondii in BALB/c mice by recombinant surface antigen 1 protein encapsulated in poly(lactide-co-glycolide) microparticles. Parasites Vectors 6:34CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cong H, Zhang M, Xin Q, Wang Z, Li Y, Zhao Q et al (2013) DNA vaccine encoding SAG1/SAG3 with A2/B subunit of cholera toxin as a genetic adjuvant protects BALB/c mice against Toxoplasma gondii. Parasites Vectors 6:63Google Scholar
  10. Danesh-Bahreinni MA, Shokri J, Samiel A, Kamali-Sarvestani E, Barzegar-Jalali M, Mohmmadi-Samani S (2011) Nanovaccine for leishmaniasis; preparation of chitosan nanoparticles containing Leishmania superoxide dismutase and evaluation of its immunogenicity in BALB/C mice. Int J Nanomed 6:835–842Google Scholar
  11. Drury RAB, Wallington EA (1980) Carleton’s Histological technique, 5th edn. Oxford University Press, OxfordGoogle Scholar
  12. Eissa MH, Antonious SN, Salama MMI, Fikry AA, Morsy TA (1990) Histopathological studies of acute, chronic and congenital infections of toxoplasmosis in mice. J Egypt Soc Parasitol 20:805–816PubMedGoogle Scholar
  13. Eissa MM, El-Azzouni MZ, Mady RF, Fathy FM, Baddour NM (2012) Initial characterization of an autoclaved Toxoplasma vaccine in mice. Exp Parasitol 131(3):310–316CrossRefPubMedGoogle Scholar
  14. Elsaid MMA, Vitor RWA, Frézard FJG, Martins MS (1999) Protection against Toxoplasmosis in mice immunized with different antigens of Toxoplasma gondii incorporated into liposomes. Mem Inst Oswaldo Cruz 94(4):485–490CrossRefPubMedGoogle Scholar
  15. El-Temsahy M, El-Kerdany ED, Abou-Shamaa AM (2002) Study of the role of antioxidants in experimental toxoplasmosis. J Med Res Inst 23:59–69Google Scholar
  16. Escajadillo A, Frenkel J (1991) Experimental toxoplasmosis and vaccine tests in Aotus monkeys. Am J Trop Med Hyg 44(4):382–389CrossRefPubMedGoogle Scholar
  17. Filisetti D, Candolfi E (2004) Immune response to Toxoplasma gondii. Ann Ist Super Sanita 40(1):71–80PubMedGoogle Scholar
  18. Gan Q, Wang T (2007) Chitosan nanoparticles as protein delivery carrier—systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B 59:24–34CrossRefGoogle Scholar
  19. Garcia JL, Gennari SM, Navarro IT, Machado RZ, Sinhorini IL, Freire RL et al (2005) Partial protection against cysts formation in pigs vaccinated with crude rhoptery proteins of Toxoplasma gondii. Vet Parasitol 129:209–217CrossRefPubMedGoogle Scholar
  20. Gatkowska J, Gasior A, Kur J, Dlugonska H (2008) Determination of the value of Toxoplasma recombinant ROP2 and ROP4 antigen in experimental toxoplasmosis. Exp Parasitol 118:266–270CrossRefPubMedGoogle Scholar
  21. Handman E (2001) Leishmaniasis: current status of vaccine development. Clin Microbiol Rev 14:229–243CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hermes G, Ajika JW, Kelly KA, Mui E, Roberts F, Kasza K et al (2008) Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neural injury in brains of mice due to common, persistent, parasitic infection. J Neuroinflamm 5:48CrossRefGoogle Scholar
  23. Ismael AB, Dimier-Poisson I, Lebrun M, Dubremetz JF, Mevelec MN (2006) MIC1-3 knockout of Toxoplasma gondii is a successful vaccine against chronic and congenital toxoplasmosis in mice. J Infect Dis 194:1176–1183CrossRefPubMedGoogle Scholar
  24. Johnson LL, Sayles PC (2002) Deficient humoral responses underlie susceptibility to Toxoplasma gondii in CD4-deficient mice. Infect Immunol 70(1):185–191CrossRefGoogle Scholar
  25. Jongert E, Roberts CW, Gargano N, Förster-Waldi E, Petersen E (2009) Vaccines against Toxoplasma gondii: challenges and opportunities. Mem Inst Oswaldo Cruz Rio J 104(2):252–266CrossRefGoogle Scholar
  26. Kang H, Remington JS, Suzuki Y (2000) Decreased resistance of B cell-deficient mice to infection with Toxoplasma gondii despite unimpaired expression of IFN-gamma, TNF-alpha, and inducible nitric oxide synthase. J Immunol 164(5):2629–2634CrossRefPubMedGoogle Scholar
  27. Khan IA, Casciotti L (1999) IL-15 prolongs the duration of CD+8 T cell mediated immunity in mice infected with a vaccine strain of Toxoplasma gondii. J Immunol 16:34503–34509Google Scholar
  28. Kikumura A, Fang H, Mun HS, Uemura N, Makino M, Sayama Y et al (2010) Protective immunity against lethal anaphylactic reaction in Toxoplasma gondii-infected mice by DNA vaccination with T. gondii-derived heat shock protein 70 gene. Parasitol Int 59(2):105–111CrossRefPubMedGoogle Scholar
  29. Kirkpatrick LA, Feeney BC (2013) A simple guide to IBM SPSS statistics for version 20.0, student ed. Wadsworth, Cengage Learning, Belmont, California, p 115Google Scholar
  30. Krahenbuhl JL, Ruskin J, Remington JS (1972) The use of killed vaccines in immunization against an intracellular parasite: Toxoplasma gondii. J Immunol 108:425–431PubMedGoogle Scholar
  31. Leslie E, Geoffrey J, James M (1991) Statistical analysis. In: Interpretation and uses of medical statistics, 4th edn. Oxford Scientific Publications, Oxford, pp 411–416Google Scholar
  32. Mady RFM (2005) Efficacy of killed vaccine against experimental toxoplasmosis. MS Thesis, Faculty of Medicine, Alexandria University, AlexandriaGoogle Scholar
  33. Makino M, Uemura N, Moroda M, Kikumura A, Piao LX, Mohamed RM et al (2011) Innate immunity in DNA vaccine with Toxoplasma gondii-heat shock protein 70 gene that induces DC activation and Th1 polarization. Vaccine 29(10):1899–1905CrossRefPubMedGoogle Scholar
  34. Martin V, Supanitsky A, Echeverria PC, Litwin S, Tanos T, De Roodt AR et al (2004) Recombinant GRA4 or ROP2 protein combined with alum or the gra4 gene provides partial protection in chronic murine models of toxoplasmosis. Clin Diagn Lab Immunol 11:704–710PubMedPubMedCentralGoogle Scholar
  35. Martinez-Gomez F, Garcia-Gonzalez LF, Mondragon-Flores R, Bautista Garfias CR (2009) Protection against Toxoplasma gondii brain cyst formation in mice immunized with Toxoplasma gondii cytoskeleton proteins and Lactobacillus casei as adjuvant. Vet Parasitol 160:311–315CrossRefPubMedGoogle Scholar
  36. Mcleod R, Frenkel JK, Estes RG, Mack DG, Eisenhauer PB, Gibori G (1988) Subcutaneous and intestinal vaccination with tachyzoites of Toxoplasma gondii and acquisition of immunity to per oral and congenital Toxoplasma challenge. J Immunol 140(5):1632–1637PubMedGoogle Scholar
  37. Meng M, He S, Zhao G, Bai Y, Zhou H, Cong H et al (2012) Evaluation of protective immune responses induced by DNA vaccines encoding Toxoplasma gondii surface antigen 1(SAG1) and 14-3-3 protein in BALA/C mice. Parasites Vectors 5:273CrossRefPubMedPubMedCentralGoogle Scholar
  38. Palatnik-de-Sousa CB (2008) Vaccines for leishmaniasis in the fore coming 25 years. Vaccine 26:1709–1724CrossRefPubMedGoogle Scholar
  39. Pan Y, Li YJ, Zhao HY, Zheng JM, Xu H, Wei G et al (2002) Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharmacol 249(1–2):139–147CrossRefGoogle Scholar
  40. Rabchevsky AG, Degos JD, Dreyfus PA (1999) Peripheral injections of Freund’s adjuvant in mice provoke leakage of serum proteins through the blood–brain barrier without inducing reactive gliosis. Brain Res 832:84–89CrossRefPubMedGoogle Scholar
  41. Rabie MM, Fumie A, Mei C, Hye-Seong M, Kazumi N, Belal US et al (2003) Induction of protective immunity by DNA vaccination with Toxoplasma gondii HSP70, HSP30 and SAG1 genes. Vaccine 21:2852–2861CrossRefGoogle Scholar
  42. Ravindran R, Bhowmick S, Das A, Ali N (2010) Comparison of BCG, MPL and Cationic liposomes adjuvant system in Leishmanial antigen vaccine formulations against murine leishmaniasis. BMC Microbiol 10:181CrossRefPubMedPubMedCentralGoogle Scholar
  43. Saita K, Nagaoka S, Shirosaki T, Horikawa M, Matsuda S, Ihara H (2012) Preparation and characterization of dispersible chitosan particles with borate crosslinking and their antimicrobial and antifungal activity. Carbohydr Res 349:52–58CrossRefPubMedGoogle Scholar
  44. Shams El-Din SA (2013) Evaluation of vaccination with Toxoplasma gondii trophozoite lysate and influenza virus vaccine against experimental murine toxoplasmosis. Acta Parasitol Glob 4(3):110–120Google Scholar
  45. Sibley LD, Mordue DG, Su C, Robben DM, Howe DK (2002) Genetic approach to study virulence and pathogenesis in Toxoplasma gondii. Philos Trans R Soc Lond B 357:81–88CrossRefGoogle Scholar
  46. Spencer JA, Smith BF, Guarino AJ, Blaghurn BL, Baker HJ (2004) The use of CPG as an adjuvant to Toxoplasma gondii vaccination. Parasitol Res 92:313–316CrossRefPubMedGoogle Scholar
  47. Stoicov C, Whary M, Rogers AB, Lee FS, Klucevesk K, Li HC et al (2004) Coinfection modulates inflammatory responses and clinical outcome of Helicobacter felis and Toxoplasma gondii infections. J Immunol 173(5):3329–3336CrossRefPubMedGoogle Scholar
  48. Tafaghodi M, Tabassi AS, Amiri N (2008) PLGA Nanospheres loaded with autoclaved Leishmania major (ALM) and CPG-ODN: preparation and in vitro characterization. Iran J Basic Med Sci 11(2):112–119Google Scholar
  49. Tan F, Hu X, Luo FJ, Pan CW, Chen XG (2011) Induction of protective Th1immune responses in mice by vaccination with recombinant Toxoplasma gondii nucleoside triphosphate hydrolase-II. Vaccine 29:2742–2748CrossRefPubMedGoogle Scholar
  50. Tappeh KH, Khorshidvand Z, Shahabi S, Mohammadzadeh H (2013) A novel adjuvant, mixture of alum and naltrexone, elicits humoral immune responses for excreted/secreted antigens of Toxoplasma gondii tachyzoites vaccine in balb/c murine Model. Turk Parazitol Derg 37(2):92–96CrossRefGoogle Scholar
  51. Tenter AM, Heckeroth AR, Weiss LM (2000) Toxoplasma gondii: from animals to humans. Int J Parasitol 30:1217–1258CrossRefPubMedPubMedCentralGoogle Scholar
  52. Thiptara A, Kongkaew W, Bilmad U, Bhumibhamon T, Anan S (2006) Toxoplasmosis in piglets. Ann NY Acad Sci 1081:336–338CrossRefPubMedGoogle Scholar
  53. Tiyaboonchai W (2003) Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ J 11(3):51–66Google Scholar
  54. Turner HJ (1983) Detection of soluble antigens of Toxoplasma gondii four-layer modification of an enzyme immunoassay. J Clin Microbiol 17(5):768–773Google Scholar
  55. Wang HL, Li YQ, Yin LT, Meng XL, Guo M, Zhang JH (2013) Toxoplasma gondii protein disulfide isomerase (TgPDI) is a novel vaccine candidate against toxoplasmosis. PLoS One 8(8):e70884CrossRefPubMedPubMedCentralGoogle Scholar
  56. Yan HK, Yuan ZG, Petersen E, Zhang X, Zhou DH, Liu Q et al (2011) Toxoplasma gondii: protective immunity against experimental toxoplasmosis induced by a DNA vaccine encoding the perforin-like protein 1. Exp Parasitol 128:38–43CrossRefPubMedGoogle Scholar
  57. Yap SG, Kersten TS, Ferguson DJ, Howe D, Susuki Y, Sher A (1998) Partially protective vaccination permits the development of latency in a normally virulent strain of Toxoplasma gondii. Infect Immunol 66(9):4382–4388Google Scholar
  58. Zaharoff DA, Rogers CJ, Hance KW, Schlom J, Grenier JW (2007) Chitosan solution enhances both humoral and cell mediated immune responses to subcutaneous vaccination. Vaccine 25(11):2085–2094CrossRefPubMedGoogle Scholar
  59. Zhang NZ, Huang SY, Zhou DH, Chen J, Xu Y, Tian WP et al (2013) Protective immunity against Toxoplasma gondii induced by DNA immunization with the gene encoding a novel vaccine candidate: calcium-dependent protein kinase 3. BMC Infect Dis 13(1):512CrossRefPubMedPubMedCentralGoogle Scholar
  60. Zhao G, Zhou A, Lu G, Meng M, Sun M, Bai Y et al (2013a) Identification and characterization of T. gondii aspartic protease as a novel vaccine. Parasites Vectors 14(6):175CrossRefGoogle Scholar
  61. Zhao G, Zhou A, Lu G, Meng M, Min S, Bai Y (2013b) Toxoplasma gondii cathepsin proteases are undeveloped prominent vaccine antigens against toxoplasmosis. BMC Infect Dis 13:207CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Indian Society for Parasitology 2014

Authors and Affiliations

  • Mona M. El Temsahy
    • 1
  • Eman D. H. El Kerdany
    • 1
  • Maha M. Eissa
    • 1
    Email author
  • Thanaa I. Shalaby
    • 2
  • Iman M. Talaat
    • 3
  • Nermine M. F. H. Mogahed
    • 1
  1. 1.Department of Medical Parasitology, Faculty of MedicineUniversity of AlexandriaAlexandriaEgypt
  2. 2.Department of Biophysics and Biomedics, Medical Research InstituteUniversity of AlexandriaAlexandriaEgypt
  3. 3.Department of Pathology, Faculty of MedicineUniversity of AlexandriaAlexandriaEgypt

Personalised recommendations