Skip to main content

Advertisement

Log in

From Crystalline to Low-cost Silicon-based Solar Cells: a Review

  • Review Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Renewable energy has become an auspicious alternative to fossil fuel resources due to its sustainability and renewability. In this respect, Photovoltaics (PV) technology is one of the essential technologies. Today, more than 90 % of the global PV market relies on crystalline silicon (c-Si)-based solar cells. This article reviews the dynamic field of Si-based solar cells from high-cost crystalline to low-cost cells and investigates how to preserve high possible efficiencies while decreasing the cost. First, we discuss the various types of c-Si solar cells with different device architectures and report recent developments. Next, thin-film solar cells with their recent advancements are given. Then, Si nanowires solar cells and their recent results are discussed. Finally, we present the most encouraging tendencies in achieving low-cost solar cells utilizing cheap materials like heavily doped silicon wafers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Kannan N, Vakeesan D (2016) Solar energy for future world: A review. Renew Sust Energ Rev 62:1092–1105

    Article  Google Scholar 

  2. Green MA (1982) Solar cells: operating principles, technology, and system applications. Prentice-Hall, Inc, Englewood Cliffs

  3. Pathi P, Peer A, Biswas R (2017) Nano-photonic structures for light trapping in ultra-thin crystalline silicon solar cells. Nanomaterials 7(1):17

    Article  Google Scholar 

  4. Nakao Y, Hiyama T (2011) Silicon-based cross-coupling reaction: an environmentally benign version. Chem Soc Rev 40(10):4893–4901

    Article  CAS  Google Scholar 

  5. Schmidt J, Peibst R, Brendel R (2018) Surface passivation of crystalline silicon solar cells: Present and future. Sol Energy Mater Sol Cells 187:39–54

    Article  CAS  Google Scholar 

  6. Green MA, Dunlop ED, Levi DH et al (2019) Solar cell efficiency tables (version 54). Prog Photovolt Res Appl 27:565–575. https://doi.org/10.1002/pip.3171

    Article  Google Scholar 

  7. Younas R, Imran H, Shah SIH et al (2019) Computational modeling of polycrystalline silicon on oxide passivating contact for silicon solar cells. IEEE Trans Electron Devices 66(4):1819–1826. https://doi.org/10.1109/TED.2019.2900691

    Article  CAS  Google Scholar 

  8. Ramanujam J, Bishop DM, Todorov TK et al (2020) Flexible CIGS, CdTe and a-Si:H based thin film solar cells: A review. Prog Mater Sci 110:100619

    Article  CAS  Google Scholar 

  9. Mercaldo LV, Veneri PD (2019) Silicon solar cells: Materials, technologies, architectures. Solar Cells and Light Management. pp 35–57. https://doi.org/10.1016/B978-0-08-102762-2.00002-1

  10. Lieber CM, Wang ZL (2007) Functional nanowires. MRS Bull 32(2):99–108. https://doi.org/10.1557/mrs2007.41

    Article  CAS  Google Scholar 

  11. Yan R, Gargas D, Yang P (2009) Nanowire photonics. Nat Photonics 3(10):569–576

    Article  CAS  Google Scholar 

  12. Zhang Y, Wu J, Aagesen M, Liu H (2015) III-V nanowires and nanowire optoelectronic devices. J Phys D Appl Phys 48(46):463001

    Article  Google Scholar 

  13. Dasgupta NP, Sun J, Liu C et al (2014) 25th anniversary article: semiconductor nanowires-synthesis, characterization, and applications. Adv Mater 26(14):2137–2184

    Article  CAS  Google Scholar 

  14. Yang P, Yan R, Fardy M (2010) Semiconductor nanowire: what’s next? Nano Lett 10(5):1529–1536. https://doi.org/10.1021/nl100665r

    Article  CAS  PubMed  Google Scholar 

  15. Lapierre RR (2011) Numerical model of current-voltage characteristics and efficiency of GaAs nanowire solar cells. J Appl Phys 109(3):034311. https://doi.org/10.1063/1.3544486

    Article  CAS  Google Scholar 

  16. Reimer ME, Bulgarini G, Akopian N et al (2012) Bright single-photon sources in bottom-up tailored nanowires. Nat Commun 3(1):1–6. https://doi.org/10.1038/ncomms1746

    Article  CAS  Google Scholar 

  17. Wallentin J, Anttu N, Asoli D et al (2013) InP nanowire array solar cells achieving 13.8 % efficiency by exceeding the ray optics limit. Science 339(6123):1057–1060. https://doi.org/10.1126/science.1230969

    Article  CAS  PubMed  Google Scholar 

  18. Service RF (2013) Performance of nanowire solar cells on the rise. Science 339(6117):263. https://doi.org/10.1126/science.339.6117.263

    Article  CAS  PubMed  Google Scholar 

  19. Luque A, Hegedus S (2003) Handbook of photovoltaic science and engineering. Wiley, Chichester

    Book  Google Scholar 

  20. Salem MS, Shaker A, Abouelatta M, Zekry A (2012) Effect of base width variation on the performance of a proposed ultraviolet low cost high efficiency solar cell structure. Conf Rec IEEE Photovolt Spec Conf, pp 000775–000777. https://doi.org/10.1109/PVSC.2012.6317718

  21. Salem MS, Zekry A, Shaker A, Abouelatta M (2016) Design and simulation of proposed low cost solar cell structures based on heavily doped silicon wafers. Conf Rec IEEE Photovolt Spec Conf, pp 2393–2397

  22. Zekry A, Shaker A, Salem M (2018) Solar cells and arrays: principles, analysis, and design. Advances in renewable energies and power technologies. Elsevier, Amsterdam, pp 3–56

  23. Chapin DM, Fuller CS, Pearson GL (1954) A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys 25(5):676–677

    Article  CAS  Google Scholar 

  24. Battaglia C, Cuevas A, De Wolf S (2016) High-efficiency crystalline silicon solar cells: Status and perspectives. Energy Environ Sci 9(5):1552–1576

    Article  CAS  Google Scholar 

  25. Liu J, Yao Y, Xiao S, Gu X (2018) Review of status developments of high-efficiency crystalline silicon solar cells. J Phys D Appl Phys 51(12):123001

    Article  Google Scholar 

  26. Xiao S, Xu S (2014) High-efficiency silicon solar cells - Materials and devices physics. Crit Rev Solid State Mater Sci 39(4):277–317. https://doi.org/10.1080/10408436.2013.834245

    Article  CAS  Google Scholar 

  27. Green MA, Blakers AW, Kurianski J et al (1984) Ultimate performance silicon solar cells. Final Report. NERDDP Project 81(1264):83

    Google Scholar 

  28. Green MA, Blakers AW, Zhao J et al (1990) Characterization of 23-percent efficient silicon solar cells. IEEE Trans Electron Devices 37(2):331–336. https://doi.org/10.1109/16.46361

    Article  CAS  Google Scholar 

  29. Schultz O, Glunz SW, Willeke GP (2004) Multicrystalline silicon solar cells exceeding 20 % efficiency. Prog Photovoltaics Res Appl 12(7):553–558. https://doi.org/10.1002/pip.583

    Article  CAS  Google Scholar 

  30. Reinwand D, Specht J, Stüwe D et al (2010) 21.1 % efficient PERC silicon solar cells on large scale by using in-line sputtering for metallization. Conf Rec IEEE Photovolt Spec Conf., pp 3582–3586. https://doi.org/10.1109/PVSC.2010.5614363

  31. Böscke T, Hellriegel R, Wütherich T et al (2011) Fully screen-printed PERC cells with laser-fired contacts - An industrial cell concept with 19.5 % efficiency. Conf Rec IEEE Photovolt Spec Conf., pp 003663–003666. https://doi.org/10.1109/PVSC.2011.6185945

  32. Lai J-H, Upadhyaya A, Ramanathan R et al (2012) Large area 19.4 % efficient rear passivated silicon solar cells with local Al BSF and screen-printed contacts. Conf Rec IEEE Photovolt Spec Conf., pp 001929–001929

  33. Dullweber T, Siebert M, Veith B et al (2012) High-efficiency industrial-type PERC solar cells applying ICP AlOx as rear passivation layer. 27th European Photovoltaic Solar Energy Conference, pp 672–675

  34. Dullweber T, Gatz S, Hannebauer H et al (2012) Towards 20 % efficient large-area screen-printed rear-passivated silicon solar cells. Prog Photovoltaics Res Appl 20(6):630–638. https://doi.org/10.1002/pip.1198

    Article  CAS  Google Scholar 

  35. Hannebauer H, Dullweber T, Baumann U et al (2014) 21.2 %-efficient fineline-printed PERC solar cell with 5 busbar front grid. Phys Status Solidi - Rapid Res Lett 8(8):675–679. https://doi.org/10.1002/pssr.201409190

    Article  CAS  Google Scholar 

  36. Ye F, Deng W, Guo W et al (2016) 22.13 % Efficient industrial p-type mono PERC solar cell. Conf Rec IEEE Photovolt Spec Conf., pp 3360–3365

  37. Dullweber T, Hannebauer H, Dorn S et al (2017) Emitter saturation current densities of 22 fA/cm2 applied to industrial PERC solar cells approaching 22 % conversion efficiency. Prog Photovolt Res Appl 25(7):509–514. https://doi.org/10.1002/pip.2806

    Article  CAS  Google Scholar 

  38. Deng W, Ye F, Liu R et al (2017) 22.61 % Efficient fully screen printed PERC solar cell. IEEE 44th Photovolt Spec Conf., pp 2220–2226. https://doi.org/10.1109/PVSC.2017.8366416

  39. Chiu JS, Zhao YM, Zhang S, Wuu DS (2020) The role of laser ablated backside contact pattern in efficiency improvement of mono crystalline silicon PERC solar cells. Sol Energy 196:462–467. https://doi.org/10.1016/j.solener.2019.12.044

    Article  CAS  Google Scholar 

  40. Gao K, Liu Y, Fan Y et al (2020) High-efficiency silicon inverted pyramid-based passivated emitter and rear cells. Nanoscale Res Lett 15(1):1–9. https://doi.org/10.1186/s11671-020-03404-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Smith DD, Cousins P, Westerberg S et al (2014) Toward the practical limits of silicon solar cells. IEEE J Photovolt 4(6):1465–1469. https://doi.org/10.1109/JPHOTOV.2014.2350695

    Article  Google Scholar 

  42. Smith DD, Reich G, Baldrias M et al (2016) Silicon solar cells with total area efficiency above 25 %. Conf Rec IEEE Photovolt Spec Conf., pp 3351–3355. https://doi.org/10.1109/PVSC.2016.7750287

  43. Haase F, Hollemann C, Schäfer S et al (2018) Laser contact openings for local poly-Si-metal contacts enabling 26.1 %-efficient POLO-IBC solar cells. Sol Energy Mater Sol Cells 186:184–193. https://doi.org/10.1016/j.solmat.2018.06.020

    Article  CAS  Google Scholar 

  44. Hollemann C, Haase F, Rienäcker M et al (2020) Separating the two polarities of the POLO contacts of an 26.1 %-efficient IBC solar cell. Sci Rep 10(1):1–5. https://doi.org/10.1038/s41598-019-57310-0

    Article  CAS  Google Scholar 

  45. Sawada T, Terada N, Tsuge S et al (1994) High-efficiency a-Si/c-Si heterojunction solar cell. Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion-WCPEC (A Joint Conference of PVSC, PVSEC and PSEC). 2:1219–1226. https://doi.org/10.1109/WCPEC.1994.519952

  46. Taguchi M, Yano A, Tohoda S et al (2014) 24.7 % Record efficiency HIT solar cell on thin silicon wafer. IEEE J Photovolt 4(1):96–99. https://doi.org/10.1109/JPHOTOV.2013.2282737

    Article  Google Scholar 

  47. Adachi D, Hernández JL, Yamamoto K (2015) Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1 % efficiency. Appl Phys Lett 107(23):233506. https://doi.org/10.1063/1.4937224

    Article  CAS  Google Scholar 

  48. Lin JT, Lai CC, Lee CT et al (2018) A high-efficiency hit solar cell with pillar texturing. IEEE J Photovolt 8(3):669–675. https://doi.org/10.1109/JPHOTOV.2018.2804330

    Article  Google Scholar 

  49. Nakamura J, Asano N, Hieda T et al (2014) Development of heterojunction back contact Si solar cells. IEEE J Photovolt 4(6):1491–1495. https://doi.org/10.1109/JPHOTOV.2014.2358377

    Article  Google Scholar 

  50. Masuko K, Shigematsu M, Hashiguchi T et al (2014) Achievement of more than 25 % conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J Photovolt 4(6):1433–1435. https://doi.org/10.1109/JPHOTOV.2014.2352151

    Article  Google Scholar 

  51. Yoshikawa K, Kawasaki H, Yoshida W et al (2017) Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26 %. Nat Energy 2(5):1–8. https://doi.org/10.1038/nenergy.2017.32

    Article  CAS  Google Scholar 

  52. Yoshikawa K, Yoshida W, Irie T et al (2017) Exceeding conversion efficiency of 26 % by heterojunction interdigitated back contact solar cell with thin film Si technology. Sol Energy Mater Sol Cells 173:37–42

    Article  CAS  Google Scholar 

  53. Richter A, Hermle M, Glunz SW (2013) Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J Photovolt 3(4):1184–1191

    Article  Google Scholar 

  54. Shah A (2017) Thin-film silicon solar cells. McEvoy’s handbook of photovoltaics: fundamentals and applications. Elsevier Inc., Amsterdam. https://doi.org/10.1016/B978-0-12-809921-6.00008-2

  55. Chittick RC, Alexander JH, Sterling HF (1969) The preparation and properties of amorphous silicon. J Electrochem Soc 116(1):77

    Article  CAS  Google Scholar 

  56. Carlson DE, Wronski CR (1976) Amorphous silicon solar cell. Appl Phys Lett 28(11):671–673

    Article  CAS  Google Scholar 

  57. Carlson DE, Wronski CR, Triano AR, Daniel RE (1976) Solar cells using Schottky barriers on amorphous silicon. Photovoltaic Specialists Conference, pp 893–895

  58. Staebler DL, Wronski CR (1977) Reversible conductivity changes in discharge-produced amorphous Si. Appl Phys Lett 31(4):292–294

    Article  CAS  Google Scholar 

  59. Aberle AG (2009) Thin-film solar cells. Thin Solid Films 517(17):4706–4710. https://doi.org/10.1016/j.tsf.2009.03.056

    Article  CAS  Google Scholar 

  60. Meier J, Spitznagel J, Kroll U et al (2004) Potential of amorphous and microcrystalline silicon solar cells. Thin Solid Films 451:518–524

    Article  Google Scholar 

  61. Benagli S, Borrello D, Vallat-Sauvain E et al (2009) High-efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI-M R&D reactor. 24th European Photovoltaic Solar Energy Conference, pp 21–25

  62. Matsui T, Maejima K, Bidiville A et al (2015) High-efficiency thin-film silicon solar cells realized by integrating stable a-Si:H absorbers into improved device design. Jpn J Appl Phys 54(8S1):08KB10. https://doi.org/10.7567/JJAP.54.08KB10

    Article  CAS  Google Scholar 

  63. Lambertz A, Finger F, Schropp REI et al (2015) Preparation and measurement of highly efficient a-Si:H single junction solar cells and the advantages of µc-SiOx:H n-layers. Prog Photovolt Res Appl 23(8):939–948. https://doi.org/10.1002/pip.2629

    Article  CAS  Google Scholar 

  64. Kang DW, Ryu J, Konagai M (2019) High-performance amorphous silicon thin film solar cells prepared at 100°C: toward flexible building-integrated photovoltaics. Electron Mater Lett 15(5):623–629. https://doi.org/10.1007/s13391-019-00161-8

    Article  CAS  Google Scholar 

  65. Vepřek S, Mareček V (1968) The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport. Solid State Electron 11(7):683–684. https://doi.org/10.1016/0038-1101(68)90071-3

    Article  Google Scholar 

  66. Usui S, Kikuchi M (1979) Properties of heavily doped GD-Si with low resistivity. J Non Cryst Solids 34(1):1–11. https://doi.org/10.1016/0022-3093(79)90002-4

    Article  CAS  Google Scholar 

  67. Flückiger R, Meier J, Keppner H et al (1992) Microcrystalline silicon prepared with the very high frequency glow discharge technique for p-i-n solar cell applications. Proceedings of the European PVSEC-11, pp 617–620

  68. Faraji M, Gokhale S, Choudhari SM et al (1992) High mobility hydrogenated and oxygenated microcrystalline silicon as a photosensitive material in photovoltaic applications. Appl Phys Lett 60(26):3289–3291. https://doi.org/10.1063/1.106722

    Article  CAS  Google Scholar 

  69. Wang A, Lucovsky G (1990) Intrinsic microcrystalline silicon deposited by remote PECVD: A new thin-film photovoltaic material. Conference Record of the IEEE Photovoltaic Specialists Conference, pp 1614–1618

  70. Meier J, Flückiger R, Keppner H, Shah A (1994) Complete microcrystalline p-i-n solar cell - Crystalline or amorphous cell behavior. Appl Phys Lett 65(7):860–862. https://doi.org/10.1063/1.112183

    Article  CAS  Google Scholar 

  71. Meier J, Torres P, Platz R et al (1996) On the way towards high efficiency thin film silicon solar cells by the “Micromorph” concept. MRS Online Proceedings Library (OPL) 420:3–14. https://doi.org/10.1557/PROC-420-3

  72. Torres P, Meier J, Flückiger R et al (1996) Device grade microcrystalline silicon owing to reduced oxygen contamination. Appl Phys Lett 69(10):1373–1375. https://doi.org/10.1063/1.117440

    Article  CAS  Google Scholar 

  73. Yamamoto K, Nakajima A, Yoshimi M et al (2004) A high efficiency thin film silicon solar cell and module. Sol Energy 77(6):939–949. https://doi.org/10.1016/j.solener.2004.08.028

    Article  CAS  Google Scholar 

  74. Mai Y, Klein S, Carius R et al (2006) Improvement of open circuit voltage in microcrystalline silicon solar cells using hot wire buffer layers. J Non Cryst Solids 352(9–20):1859–1862. https://doi.org/10.1016/j.jnoncrysol.2005.11.116

    Article  CAS  Google Scholar 

  75. Van Den Donker MN, Klein S, Rech B et al (2007) Microcrystalline silicon solar cells with an open-circuit voltage above 600 mV. Appl Phys Lett 90(18):183504. https://doi.org/10.1063/1.2734375

    Article  CAS  Google Scholar 

  76. Sai H, Koida T, Matsui T et al (2013) Microcrystalline silicon solar cells with 10.5 % efficiency realized by improved photon absorption via periodic textures and highly transparent conductive oxide. Appl Phys Express 6(10):104101. https://doi.org/10.7567/APEX.6.104101

    Article  CAS  Google Scholar 

  77. Hänni S, Bugnon G, Parascandolo G et al (2013) High-efficiency microcrystalline silicon single-junction solar cells. Prog Photovolt Res Appl 21(5):821–826. https://doi.org/10.1002/pip.2398

    Article  CAS  Google Scholar 

  78. Green MA, Emery K, Hishikawa Y et al (2014) Solar cell efficiency tables (version 43). Prog Photovolt Res Appl 22(1):1–9. https://doi.org/10.1002/pip.2452

    Article  Google Scholar 

  79. Sai H, Matsui T, Matsubara K et al (2014) 11.0 %-Efficient thin-film microcrystalline silicon solar cells with honeycomb textured substrates. IEEE J Photovolt 4(6):1349–1353. https://doi.org/10.1109/JPHOTOV.2014.2355037

    Article  Google Scholar 

  80. Sai H, Maejima K, Matsui T et al (2015) High-efficiency microcrystalline silicon solar cells on honeycomb textured substrates grown with high-rate VHF plasma-enhanced chemical vapor deposition. Jpn J Appl Phys 54(8S1):08KB05. https://doi.org/10.7567/JJAP.54.08KB05

    Article  CAS  Google Scholar 

  81. Sai H, Matsui T, Kumagai H, Matsubara K (2018) Thin-film microcrystalline silicon solar cells: 11.9 % efficiency and beyond. Appl Phys Express 11(2):022301. https://doi.org/10.7567/APEX.11.022301

    Article  Google Scholar 

  82. Matsui T, Sai H, Suezaki T et al (2013) Development of highly stable and efficient amorphous silicon based solar cells. In: Proc. 28th European Photovoltaic Solar Energy Conference, vol 2213

  83. Green MA, Emery K, Hishikawa Y et al (2015) Solar cell efficiency tables (Version 45). Prog Photovolt Res Appl 23(1):1–9. https://doi.org/10.1002/pip.2573

    Article  Google Scholar 

  84. Zhu J, Yu Z, Fan S, Cui Y (2010) Nanostructured photon management for high performance solar cells. Mater Sci Eng R Rep 70(3–6):330–340. https://doi.org/10.1016/j.mser.2010.06.018

    Article  CAS  Google Scholar 

  85. Sivasubramaniam S, Alkaisi MM (2014) Inverted nanopyramid texturing for silicon solar cells using interference lithography. Microelectron Eng 119:146–150. https://doi.org/10.1016/j.mee.2014.04.004

    Article  CAS  Google Scholar 

  86. Smith AW, Rohatgi A (1993) Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells. Sol Energy Mater Sol Cells 29(1):37–49. https://doi.org/10.1016/0927-0248(93)90090-P

    Article  CAS  Google Scholar 

  87. Mavrokefalos A, Han SE, Yerci S et al (2012) Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications. Nano Lett 12(6):2792–2796

    Article  CAS  Google Scholar 

  88. Lu H, Gang C (2007) Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett 7(11):3249–3252. https://doi.org/10.1021/nl071018b

    Article  CAS  Google Scholar 

  89. Zhu J, Yu Z, Burkhart GF et al (2009) Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett 9(1):279–282. https://doi.org/10.1021/nl802886y

    Article  CAS  PubMed  Google Scholar 

  90. Garnett E, Yang P (2010) Light trapping in silicon nanowire solar cells. Nano Lett 10(3):1082–1087. https://doi.org/10.1021/nl100161z

    Article  CAS  PubMed  Google Scholar 

  91. Tsakalakos L, Balch JE, Fronheiser J et al (2007) Strong broadband optical absorption in silicon nanowire films. J Nanophotonics 1(1):013552. https://doi.org/10.1117/1.2768999

    Article  CAS  Google Scholar 

  92. Hoffmann S, Bauer J, Ronning C et al (2009) Axial p-n junctions realized in silicon nanowires by ion implantation. Nano Lett 9(4):1341–1344. https://doi.org/10.1021/nl802977m

    Article  CAS  PubMed  Google Scholar 

  93. Yu L, O’Donnell B, Foldyna M, i Cabarrocas PR (2012) Radial junction amorphous silicon solar cells on PECVD-grown silicon nanowires. Nanotechnology 23(19):194011–194018. https://doi.org/10.1088/0957-4484/23/19/194011

    Article  CAS  PubMed  Google Scholar 

  94. Dupré L, Buttard D, Solanki A et al (2015) Radial photovoltaic junction with single Si nanowire core-shell structure. Micro Nano Lett 10(1):37–39. https://doi.org/10.1049/mnl.2014.0138

    Article  Google Scholar 

  95. Wang X, Shen H, Eichfield SM et al (2016) Radial junction silicon nanowire photovoltaics with heterojunction with intrinsic thin layer (HIT) structure. IEEE J Photovolt 6(6):1446–1450. https://doi.org/10.1109/JPHOTOV.2016.2601949

    Article  Google Scholar 

  96. Fang H, Li X, Song S et al (2008) Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications. Nanotechnology 19(25):255703. https://doi.org/10.1088/0957-4484/19/25/255703

    Article  CAS  PubMed  Google Scholar 

  97. Sahoo MK, Kale P (2019) Integration of silicon nanowires in solar cell structure for efficiency enhancement: A review. J Mater 5(1):34–48. https://doi.org/10.1016/j.jmat.2018.11.007

    Article  Google Scholar 

  98. Peng K, Xu Y, Wu Y et al (2005) Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 1(11):1062–1067. https://doi.org/10.1002/smll.200500137

    Article  CAS  PubMed  Google Scholar 

  99. Yu L, Fortuna F, O’Donnell B et al (2012) Bismuth-catalyzed and doped silicon nanowires for one-pump-down fabrication of radial junction solar cells. Nano Lett 12(8):4153–4158. https://doi.org/10.1021/nl3017187

    Article  CAS  PubMed  Google Scholar 

  100. Misra S, Yu L, Foldyna M, Roca I, Cabarrocas P (2013) High efficiency and stable hydrogenated amorphous silicon radial junction solar cells built on VLS-grown silicon nanowires. Sol Energy Mater Sol Cells 118:90–95. https://doi.org/10.1016/j.solmat.2013.07.036

    Article  CAS  Google Scholar 

  101. Perraud S, Poncet S, Noël S et al (2009) Full process for integrating silicon nanowire arrays into solar cells. Sol Energy Mater Sol Cells 93(9):1568–1571. https://doi.org/10.1016/j.solmat.2009.04.009

    Article  CAS  Google Scholar 

  102. Zhang P, Liu P, Siontas S et al (2015) Dense nanoimprinted silicon nanowire arrays with passivated axial p-i-n junctions for photovoltaic applications. J Appl Phys 117(12):125104. https://doi.org/10.1063/1.4916535

    Article  CAS  Google Scholar 

  103. Khan F, Baek SH, Kim JH (2016) Novel approach for fabrication of buried contact silicon nanowire solar cells with improved performance. Sol Energy 137:122–128. https://doi.org/10.1016/j.solener.2016.08.010

    Article  CAS  Google Scholar 

  104. Shirayanagi Y, Yashiki Y, Kato S, Konagai M (2017) Preparation of axial-type wire-structure crystalline silicon solar cells. Jpn J Appl Phys 56(8S2):08MA09. https://doi.org/10.7567/JJAP.56.08MA09

    Article  Google Scholar 

  105. Lu Y, Lal A (2010) High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography. Nano Lett 10(11):4651–4656. https://doi.org/10.1021/nl102867a

    Article  CAS  PubMed  Google Scholar 

  106. Shu Q, Wei J, Wang K et al (2009) Hybrid heterojunction and photoelectrochemistry solar cell based on silicon nanowires and double-walled carbon nanotubes. Nano Lett 9(12):4338–4342. https://doi.org/10.1021/nl902581k

    Article  CAS  PubMed  Google Scholar 

  107. Jia G, Gawlik A, Bergmann J et al (2014) Silicon nanowire solar cells with radial p-n heterojunction on crystalline silicon thin films: Light trapping properties. IEEE J Photovolt 4(1):28–32. https://doi.org/10.1109/JPHOTOV.2013.2289873

    Article  Google Scholar 

  108. Eisenhawer B, Sill I, Falk F (2013) Radial heteroemitter solar cells based on VLS grown silicon nanowires. Phys Status Solidi Appl Mater Sci 210(4):695–700. https://doi.org/10.1002/pssa.201200374

    Article  CAS  Google Scholar 

  109. Dong G, Zhou Y, Zhang H et al (2017) Passivation of high aspect ratio silicon nanowires by using catalytic chemical vapor deposition for radial heterojunction solar cell application. RSC Adv 7(71):45101–45106. https://doi.org/10.1039/c7ra08343b

    Article  CAS  Google Scholar 

  110. Al-Taay HF, Mahdi MA, Parlevliet D, Jennings P (2017) Fabrication and characterization of solar cells based on silicon nanowire homojunctions. Silicon 9(1):17–23. https://doi.org/10.1007/s12633-015-9329-0

    Article  CAS  Google Scholar 

  111. Ma G, Du R, Cai Y, nan et al (2019) Improved power conversion efficiency of silicon nanowire solar cells based on transition metal oxides. Sol Energy Mater Sol Cells 193:163–168. https://doi.org/10.1016/j.solmat.2019.01.010

    Article  CAS  Google Scholar 

  112. Salem MS, Zekry A, Shaker A et al (2019) Performance enhancement of a proposed solar cell microstructure based on heavily doped silicon wafers. Semicond Sci Technol 34(3):035012. https://doi.org/10.1088/1361-6641/ab0078

    Article  CAS  Google Scholar 

  113. Salem MS, Alzahrani AJ, Ramadan RA et al (2020) Physically based analytical model of heavily doped silicon wafers based proposed solar cell microstructure. IEEE Access 8:138898–138906. https://doi.org/10.1109/ACCESS.2020.3012657

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by all authors. The first draft of the manuscript was written by Mohamed Okil. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. Shaker.

Ethics declarations

This article does not contain any studies involving human participants performed by any of the authors.

Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okil, M., Salem, M.S., Abdolkader, T.M. et al. From Crystalline to Low-cost Silicon-based Solar Cells: a Review. Silicon 14, 1895–1911 (2022). https://doi.org/10.1007/s12633-021-01032-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01032-4

Keywords

Navigation