Advertisement

Silicon

pp 1–8 | Cite as

Unified Quantum and Reliability Model for Ultra-Thin Double-Gate MOSFETs

  • Rana Y. ElKashlan
  • Omnia Samy
  • Azza Anis
  • Yehea Ismail
  • Hamdy AbdelhamidEmail author
Original Paper
  • 12 Downloads

Abstract

This paper presents a unified two-dimensional (2D) threshold voltage model for lightly doped symmetrical double-gate p-channel MOSFETs including quantum confinement effects and negative bias temperature instability (NBTI). The proposed model has been derived by solving the two-dimensional Poisson equation to obtain the NBTI potential model and the one-dimensional Schrödinger equation together with the 2D Poisson equation to obtain the quantum confinement model. The quantum expression was subsequently embedded in the NBTI solution to reach a unified model for both quantum confinement and NBTI. The model is simple and continuous, thereby ensuring compatibility for insertion in Verilog-A based device simulators. The effect of stress time on the degradation of the threshold voltage has been measured over a 10 year period. The accuracy of the model has been validated through comparisons with both 2D numerical simulations and experimental data. The results show matching within ±3% for channel lengths down to 7 nm and silicon thicknesses of 5 nm at 1 GHz operation after 10 years.

Keywords

Double-gate FETs Quantum confinement Semiconductor device reliability Semiconductor device modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Akhavan ND, Umana-Membreno GA, Gu R, Antoszewski J, Faraone L (2018) Random dopant fluctuations and statistical variability in n-channel junctionless FETs. Nanotechnology 29:025203.  https://doi.org/10.1088/1361-6528/aa9d45 CrossRefPubMedGoogle Scholar
  2. 2.
    Baccarani G, Reggiani S (1999) A compact double-gate MOSFET model comprising quantum-mechanical and nonstatic effects. IEEE Trans Electron Devices 46:1656–1666.  https://doi.org/10.1109/16.777154 CrossRefGoogle Scholar
  3. 3.
    Chauhan YS, Lu DD, Vanugopalan S, Khandelwal S, Duarte JP, Paydavosi N, Niknejad A, Hu C (2015) Channel current and real device effects. FinFET modeling for IC simulation and design using the BSIM-CMG standard. Elsevier, pp 99–125Google Scholar
  4. 4.
    Cheng B, Brown AR, Roy S, Asenov A, Member S, Structures AD (2010) PBTI / NBTI-related variability in TB-SOI and DG MOSFETs. IEEE Electron Device Lett 31:408–410.  https://doi.org/10.1109/LED.2010.2043812 CrossRefGoogle Scholar
  5. 5.
    Dasgupta A, Agarwal A, Chauhan YS (2017) Unified compact model for nanowire transistors including quantum effects and quasi-ballistic transport. IEEE Trans Electron Devices 64(1–9):1837–1845.  https://doi.org/10.1109/TED.2017.2672207 CrossRefGoogle Scholar
  6. 6.
    Dutta T, Rafhay Q, Clerc R, Lacord J, Monfray S, Pananakakis G, Boeuf F, Ghibaudo G (2013) Impact of quantum effects on the short channel effects of III-V nMOSFETs in weak and strong inversion regimes. Solid State Electron 88:43–48.  https://doi.org/10.1016/j.sse.2013.04.007 CrossRefGoogle Scholar
  7. 7.
    Elhamid HA, Deen MJ (2008) Continuous current and surface potential models for undoped and lightly doped double-gate metal-oxide-semiconductor field-effect transistors. J Appl Phys 103:114501.  https://doi.org/10.1063/1.2937177 CrossRefGoogle Scholar
  8. 8.
    Fleetwood DM (2018) Border traps and bias-temperature instabilities in MOS devices. Microelectron Reliab 80:266–277.  https://doi.org/10.1016/j.microrel.2017.11.007 CrossRefGoogle Scholar
  9. 9.
    Grasser T, Kaczer B, Goes W, Aichinger T, Hehenberger P, Nelhiebel M (2009) A two-stage model for negative bias temperature instability. 2009 IEEE international reliability physics symposium. Pp. 33–44. IEEEGoogle Scholar
  10. 10.
    Hatta SFWM, Soin N, Zhang JF (2010) The effect of gate oxide thickness and drain bias on NBTI degradation in 45nm PMOS. 2010 IEEE international conference on semiconductor electronics (ICSE2010). Pp. 210–213. IEEEGoogle Scholar
  11. 11.
    Hehenberger P, Goes W, Baumgartner O, Franco J, Kaczer B, Grasser T (2011) Quantum-mechanical modeling of NBTI in high-k SiGe MOSFETs. International conference on simulation of semiconductor processes and devices, SISPAD. Pp. 11–14. IEEEGoogle Scholar
  12. 12.
    Huard V, Denais M, Parthasarathy C (2006) NBTI degradation: from physical mechanisms to modelling. Microelectron Reliab 46:1–23.  https://doi.org/10.1016/j.microrel.2005.02.001 CrossRefGoogle Scholar
  13. 13.
    Kim K, Possum JG (2001) Double-gate CMOS: symmetrical- versus asymmetrical-gate devices. IEEE Trans Electron Devices 48:294–299.  https://doi.org/10.1109/16.902730 CrossRefGoogle Scholar
  14. 14.
    Kwon S-K, Kwon H-M, Han I-S, Jang J-H, Oh S-H, Song H-S, Park B-S, Chung Y-S, Lee J-H, Lee J-H, Kim S-B, Lee G, Hi-Deok (2018) Effects of fluorine on the NBTI reliability and low-frequency noise characteristics of p-MOSFETs. IEEE J Electron Devices Soc:1–1.  https://doi.org/10.1109/JEDS.2018.2855432
  15. 15.
    Liang X, Taur Y (2004) A 2-D analytical solution for SCEs in DG MOSFETs. IEEE Trans Electron Devices 51:1385–1391.  https://doi.org/10.1109/TED.2004.832707 CrossRefGoogle Scholar
  16. 16.
    Londhe KP, Chavan YV (2016) Design of Double gate junctionless MOSFET using germanium for improvement of performance parameters. 2016 international conference on automatic control and dynamic optimization techniques (ICACDOT). Pp. 855–858. IEEEGoogle Scholar
  17. 17.
    Munteanu D, Autran JL, Harrison S (2005) Quantum short-channel compact model for the threshold voltage in double-gate MOSFETs with high-permittivitty gate dielectrics. J Non-Cryst Solids 351:1911–1918.  https://doi.org/10.1016/j.jnoncrysol.2005.04.037 CrossRefGoogle Scholar
  18. 18.
    Nan Wu, Qingchun Zhang, Chunxiang Zhu, Chen Shen, Li, M.F., Chan, D.S.H., Balasubramanian, N.: BTI and charge trapping in germanium p- and n-MOSFETs with CVD HfO/sub 2/ dielectric. In: IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest. pp. 555–558. IEEEGoogle Scholar
  19. 19.
    Parihar N, Mahapatra S (2018) Prediction of NBTI stress and recovery time kinetics in Si capped SiGe p-MOSFETs. 2018 IEEE international reliability physics symposium (IRPS). p. P-TX.5–1-P-TX.5–7. IEEEGoogle Scholar
  20. 20.
    Parihar N, Mukhopadhyay S (2017) BTI analysis tool — modeling of NBTI DC. AC Stress and Recovery Time Kinetics 65:1–12Google Scholar
  21. 21.
    Parihar N, Sharma U, Southwick RG, Wang M, Stathis JH, Mahapatra S (2018) Ultrafast measurements and physical modeling of NBTI stress and recovery in RMG FinFETs under diverse DC–AC experimental conditions. IEEE Trans Electron Devices 65:23–30.  https://doi.org/10.1109/TED.2017.2773122 CrossRefGoogle Scholar
  22. 22.
    Pathak V, Saini G (2018) A Graded Channel dual-material gate Junctionless MOSFET for analog applications. Procedia Comput Sci 125:825–831.  https://doi.org/10.1016/j.procs.2017.12.105 CrossRefGoogle Scholar
  23. 23.
    Paydavosi N, Venugopalan S, Chauhan YS, Duarte JP, Jandhyala S, Niknejad AM, Hu CC (2013) BSIM—SPICE models enable FinFET and UTB IC designs. IEEE Access 1:201–215.  https://doi.org/10.1109/ACCESS.2013.2260816 CrossRefGoogle Scholar
  24. 24.
    Ruchika, Sharma T, Sharma KG (2014) Double Gate MOSFET circuit design. International conference on recent advances and innovations in engineering (ICRAIE-2014). Pp. 1–4. IEEEGoogle Scholar
  25. 25.
    Samy O, Abdelhamid H, Ismail Y, Zekry A (2016) A 2D compact model for lightly doped DG MOSFETs (P-DGFETs) including negative bias temperature instability (NBTI) and short channel effects (SCEs). Microelectron Reliab 67:82–88.  https://doi.org/10.1016/j.microrel.2016.11.004 CrossRefGoogle Scholar
  26. 26.
    Selmi, L., Sangiorgi, E., Bez, R., Ricc\`o, B.: measurement of the hot hole injection probability from Si into SiO2 in p-MOSFET’s. IEEE IEDM tech. Dig 333 (1993)Google Scholar
  27. 27.
    Tsormpatzoglou A, Dimitriadis CA, Clerc R, Rafhay Q, Pananakakis G, Ghibaudo G (2007) Semi-analytical modeling of Short-Channel effects in Si and Ge symmetrical double-gate MOSFETs. IEEE Trans Electron Devices 54:1943–1952.  https://doi.org/10.1109/TED.2007.901075 CrossRefGoogle Scholar
  28. 28.
    UC Berkeley Device Group: BSIM-CMG Model, http://bsim.berkeley.edu/models/bsimcmg/
  29. 29.
    Wong HSP (2005) Beyond the conventional transistor. Solid State Electron 49:755–762.  https://doi.org/10.1016/j.sse.2004.10.014 CrossRefGoogle Scholar
  30. 30.
    El Kashlan YR, Abd El Hamid H, Ismail YI (2018) Two-dimensional models for quantum effects on short channel electrostatics of lightly doped symmetric double-gate MOSFETs. IET Circuits, Devices Syst 12:341–346.  https://doi.org/10.1049/iet-cds.2017.0046 CrossRefGoogle Scholar
  31. 31.
    Yu-Sheng Wu H (2011) V.P.-H.: impact of quantum confinement on Short-Channel effects for ultrathin-body germanium-on-insulator MOSFETs. IEEE ELECTRON DEVICE Lett 32:18–20CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Rana Y. ElKashlan
    • 1
    • 2
  • Omnia Samy
    • 2
  • Azza Anis
    • 3
  • Yehea Ismail
    • 2
  • Hamdy Abdelhamid
    • 2
    Email author
  1. 1.Electronics & Communication DepartmentMisr International UniversityCairoEgypt
  2. 2.Center of Nanoelectronics and Devices (CND), Zewail City of Science and TechnologyGizaEgypt
  3. 3.Electronics, Communications, and Computers DepartmentFaculty of Engineering Helwan UniversityHelwanEgypt

Personalised recommendations