Advertisement

Silicon

pp 1–8 | Cite as

The Spray-Pyrolyzed Copper Oxide Properties Based Precursor Concentration

  • Abdelmounaim ChetouiEmail author
  • Amara Zouaoui
Original Paper

Abstract

In this work, we report the effects of the precursor concentration on some physical properties of the spray pyrolyzed copper oxide films (CSi1-CSi4) on porous silicon substrates. Useful informations were extracted using the different characterization techniques: XRD, RAMAN, Photoluminescence (PL) spectroscopy, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The XRD diffractogrammes show the formation of phase mixture (CuO and Cu2O) for all the samples. RAMAN analysis is in accordance with the XRD results. The PL spectroscopy provides ample informations about the emission bands of copper oxide. The SEM and AFM characterizations show a clear effect of the molarity on the microstructural properties of the deposited copper oxide films.

Keywords

Copper oxide Spray pyrolysis Porous silicon Catalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are very thankful to Pr. A. Bsiesy for his hospitality within LTM laboratory of Grenoble (France). We are also grateful to V. Bolcato (LTM laboratory, Grenoble, France) for helping us to perform the SEM and AFM characterizations. We would like also to thank Dr. M. R. Khelladi for helping us to do the AFM characterizations during the major revisions of this work. We are also grateful to Dr. M. Siad from the nuclear research center of Algiers (CRNA) for helping us to extract the PL characteristics of our samples.

References

  1. 1.
    Prades JD, Jimenez-Diaz R, Hernandez-Ramirez F, Fernandez-Romero L, Andreu T, Cirera A, Romano-Rodriguez A, Cornet A, Morante JR, Barth S, Mathur S (Sep. 2008) Toward a systematic understanding of photodetectors based on individual metal oxide nanowires. J Phys Chem C 112(37):14639–14644CrossRefGoogle Scholar
  2. 2.
    Ingole SM, Navale ST, Navale YH, Bandgar DK, Stadler FJ, Mane RS, Ramgir NS, Gupta SK, Aswal DK, Patil VB (2017) Nanostructured tin oxide films: physical synthesis, characterization, and gas sensing properties. J Colloid Interface Sci 493:162–170CrossRefGoogle Scholar
  3. 3.
    Mardare D, Cornei N, Rusu GI (2009) On the properties of nanostructured titanium oxide thin films. Superlattice Microst 46(1–2):209–216CrossRefGoogle Scholar
  4. 4.
    Wu C-L, Wang C-K, Lin C-K, Wang S-C, Huang J-L (Sep. 2013) Electrochromic properties of nanostructured tungsten oxide films prepared by surfactant-assisted sol–gel process. Surf Coat Technol 231:403–407CrossRefGoogle Scholar
  5. 5.
    Huotari J, Bjorklund R, Lappalainen J, Spetz AL (2014) Nanostructured mixed phase vanadium oxide thin films as highly sensitive Ammonia sensor material. Procedia Eng 87:1035–1038CrossRefGoogle Scholar
  6. 6.
    Anandan S, Wen X, Yang S (Sep. 2005) Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Mater Chem Phys 93(1):35–40CrossRefGoogle Scholar
  7. 7.
    Krishnamoorthy K, Kim S-J (Sep. 2013) Growth, characterization and electrochemical properties of hierarchical CuO nanostructures for supercapacitor applications. Mater Res Bull 48(9):3136–3139CrossRefGoogle Scholar
  8. 8.
    Kim Y-S, Hwang I-S, Kim S-J, Lee C-Y, Lee J-H (Dec. 2008) CuO nanowire gas sensors for air quality control in automotive cabin. Sensors Actuators B Chem 135(1):298–303CrossRefGoogle Scholar
  9. 9.
    Wang S, Zhang M, Zhang W (Mar. 2011) Yolk−Shell catalyst of single au nanoparticle encapsulated within hollow mesoporous silica microspheres. ACS Catal 1(3):207–211CrossRefGoogle Scholar
  10. 10.
    T. Maruyama, Copper oxide thin films prepared from copper Dipivaloylmethanate and oxygen by chemical vapor deposition, Jpn J Appl Phys, vol. 37, no. Part 1, No. 7A, pp. 4099–4102, Jul. 1998Google Scholar
  11. 11.
    Liu L, Hong K, Hu T, Xu M (Jan. 2012) Synthesis of aligned copper oxide nanorod arrays by a seed mediated hydrothermal method. J Alloys Compd 511(1):195–197CrossRefGoogle Scholar
  12. 12.
    Ray SC (Jun. 2001) Preparation of copper oxide thin film by the sol–gel-like dip technique and study of their structural and optical properties. Sol Energy Mater Sol Cells 68(3–4):307–312CrossRefGoogle Scholar
  13. 13.
    Amikura K, Kimura T, Hamada M, Yokoyama N, Miyazaki J, Yamada Y (Aug. 2008) Copper oxide particles produced by laser ablation in water. Appl Surf Sci 254(21):6976–6982CrossRefGoogle Scholar
  14. 14.
    Kosugi T, Kaneko S (Dec. 1998) Novel spray-pyrolysis deposition of cuprous oxide thin films. J Am Ceram Soc 81(12):3117–3124CrossRefGoogle Scholar
  15. 15.
    Abdelmounaïm C, Amara Z, Maha A, Mustapha D (2016) Effects of molarity on structural, optical, morphological and CO2 gas sensing properties of nanostructured copper oxide films deposited by spray pyrolysis. Mater Sci Semicond Process 43:214–221CrossRefGoogle Scholar
  16. 16.
    Allam NK, Grimes CA (Jun. 2011) Electrochemical fabrication of complex copper oxide nanoarchitectures via copper anodization in aqueous and non-aqueous electrolytes. Mater Lett 65(12):1949–1955CrossRefGoogle Scholar
  17. 17.
    A. Raship, M. Z. Sahdan, F. Adriyanto, N. M. Fauzee, and A. S Bakri, The Effects of Ph Value on the Preparation of Copper Oxide Thin Films By Dip Coating Technique, vol. 11, no. 14, pp. 8829–8833, 2016Google Scholar
  18. 18.
    Ben Salem S, Achour Z, Thamri K, Touayar O (2014) Study and characterization of porous copper oxide produced by electrochemical anodization for radiometric heat absorber. Nanoscale Res Lett 9(1):577CrossRefGoogle Scholar
  19. 19.
    Voinea M, Vladuta C, Bogatu C, Duta A (2008) Surface properties of copper based cermet materials. Mater Sci Eng B Solid-State Mater Adv Technol 152(1–3):76–80CrossRefGoogle Scholar
  20. 20.
    Nickolov RN, Donkova BV, Milenova KI, Mehandjiev DR (2006) Porous texture of CuO prepared from copper oxalate precursor. Adsorpt Sci Technol 24(6):497–505CrossRefGoogle Scholar
  21. 21.
    Jia B, Qin M, Zhang Z, Cao Z, Wu H, Chen P, Zhang L, Lu X, Qu X (Feb. 2016) The formation of CuO porous mesocrystal ellipsoids via tuning the oriented attachment mechanism. CrystEngComm 18(8):1376–1383CrossRefGoogle Scholar
  22. 22.
    Dhas CR, Alexander D, Christy AJ, Jeyadheepa K, Raj AME, Raja CS (Aug. 2014) Preparation and characterization of CuO thin films prepared by spray pyrolysis technique for ethanol gas sensing application. Asian J Appl Sci 7(8):671–684CrossRefGoogle Scholar
  23. 23.
    Halder NC, Wagner CNJ (1966) Separation of particle size and lattice strain in integral breadth measurements. Acta Crystallogr 20(2):312–313CrossRefGoogle Scholar
  24. 24.
    A. K. Verma and R. S. N Tripathi, Thickness Dependent Properties of n-CdSe Thin Films Fabricated by Electron Beam Evaporation Technique , vol. 10, no. 7, pp. 239–246, 2013Google Scholar
  25. 25.
    Chen XK, Irwin JC, Franck JP (Nov. 1995) Evidence for a strong spin-phonon interaction in cupric oxide. Phys Rev B 52(18):R13130–R13133CrossRefGoogle Scholar
  26. 26.
    Yu T, Zhao X, Shen Z, Wu Y, Su W (Aug. 2004) Investigation of individual CuO nanorods by polarized micro-Raman scattering. J Cryst Growth 268(3–4):590–595CrossRefGoogle Scholar
  27. 27.
    Dar MA, Kim YS, Kim WB, Sohn JM, Shin HS (Sep. 2008) Structural and magnetic properties of CuO nanoneedles synthesized by hydrothermal method. Appl Surf Sci 254(22):7477–7481CrossRefGoogle Scholar
  28. 28.
    Balamurugan B, Mehta BR, Avasthi DK, Singh F, Arora AK, Rajalakshmi M, Raghavan G, Tyagi AK, Shivaprasad SM (Sep. 2002) Modifying the nanocrystalline characteristics structure, size, and surface states of copper oxide thin films by high-energy heavy-ion irradiation. J Appl Phys 92(6):3304–3310CrossRefGoogle Scholar
  29. 29.
    Schennach R, Gupper A (2003) Copper oxidation studied by in situ Raman spectroscopy. MRS Online Proc Libr Arch:766Google Scholar
  30. 30.
    Mencer DE, Hossain MA, Schennach R, Grady T, McWhinney H, Gomes JAG, Kesmez M, Parga JR, Barr TL, Cocke DL (Dec. 2004) On the surface analysis of copper oxides: the difficulty in detecting Cu3O2. Vacuum 77(1):27–35CrossRefGoogle Scholar
  31. 31.
    Mageshwari K, Sathyamoorthy R (2013) Flower-shaped CuO nanostructures: synthesis, characterization andAntimicrobial activity. J Mater Sci Technol 29(10):909–914CrossRefGoogle Scholar
  32. 32.
    Mageshwari K, Sathyamoorthy R (Apr. 2013) Physical properties of nanocrystalline CuO thin films prepared by the SILAR method. Mater Sci Semicond Process 16(2):337–343CrossRefGoogle Scholar
  33. 33.
    Gao C, Shen H, Sun L, Shen Z (Jun. 2011) Chemical bath deposition of Bi2S3 films by a novel deposition system. Appl Surf Sci 257(17):7529–7533CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Division of Ionized environments and lasersCenter for Development of Advanced Technologies CDTAAlgiersAlgeria
  2. 2.Laboratory of Semiconductor Materials and Metallic Oxides (LMSOM), Physics DepartmentUniversity of Sciences and Technology Houari Boumediene USTHBAlgiersAlgeria

Personalised recommendations