Advertisement

Silicon

pp 1–11 | Cite as

Silicon Nanoparticles Preparation by Induction Plasma Technology for Li-ion Batteries Anode Material

  • Wenping Liu
  • Huarui XuEmail author
  • Haiqing Qin
  • Yanlu Lv
  • Guisheng Zhu
  • Feng Lin
  • Xiaoxu Lei
  • Zhenjun Zhang
  • Lihui Wang
Original Paper
  • 7 Downloads

Abstract

The monocrystalline silicon nanoparticles were prepared by induction plasma technology with micron silicon powder as raw material. The mean particle size is 70 and 15 nm silicon nanoparticles prepared with the quenching gas flow rate at 50 and 100 L min−1, respectively. The particle size, crystallinity and morphology are mainly influenced by the quenching gas flow rate. The fine grit silicon nanoparticles can be formed under the condition of high quenching gas flow rate due to the inhibition of nucleation and growth. The silicon nanoparticles were used to synthesis Si@Graphite composites, the initial discharge capacity and coulombic efficiency of 70 nm Si@Graphite composites are 531.9 mAh g−1 and 83.4%, while 15 nm Si@Graphite composites are 510.6 mAh g−1 and 81.73%, respectively. The capacity retention of 70 nm Si@Graphite composites after 500 cycles is only 52.9%, while 15 nm Si@Graphite composites is 88%. It has been found the fracture of silicon nanoparticles and graphite along with the destruction of electrode structure lead to the capacity loss in the 70 nm Si@Graphite composites electrode. Because the forming of larger solid electrolyte interphase (SEI) film in 15 nm Si@Graphite composites electrode, the charge transfer on the electrode surface is hindered. However, the lithium-ion diffusion ability of 15 nm Si@Graphite composites is little higher than 70 nm Si@Graphite composites.

Keywords

Induction plasma process Silicon nanoparticles Particle size Si@Graphite composites Li-ion batteries Anode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Guangxi Innovation-Driven Development Project (AA17204022, AA18118001), the Science and Technology Plan of China Nonferrous Group (2016KJJH03) and the Scientific and Technological Plan of Guilin City (201607010322).

References

  1. 1.
    Zuo XX, Zhu J, Müller-Buschbaum P, Cheng YJ (2017) Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31:113–143CrossRefGoogle Scholar
  2. 2.
    Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262CrossRefGoogle Scholar
  3. 3.
    Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRefGoogle Scholar
  4. 4.
    Jaegeon R, Hong DK, Myoungsoo S, Park SJ, Multiscale H (2016) Silicon flake anodes for high initial Coulombic efficiency and cycle stability. ACS Nano 10:10589–10597CrossRefGoogle Scholar
  5. 5.
    Lu B, Ma BJ, Yu RZ, Lu Q, Cai SY, Chen MF, Wu ZY, Xiang KX, Wang XY (2017) Photovoltaic monocrystalline silicon waste-derived hierarchical silicon/flake graphite/carbon composite as low-cost and high-capacity anode for lithiumion batteries. ChemistrySelect 2:3479–3489CrossRefGoogle Scholar
  6. 6.
    Fang WH, Wang JY, Shi ZK, Yan SP, Song BH, Peng XK, Zhang YX (2018) Surface Modification of silicon nanoparticles by an “Ink” layer for Advanced lithium ion batteries. ACS Appl Mater Interfaces 10:19639–19648CrossRefGoogle Scholar
  7. 7.
    Bin W, Ryu JG, Choi SH, Zhang XH, Didier P, Li XL, Zhi LJ, Park SJ, Rodney SR (2019) Ultrafast-charging silicon-based coral-like network anodes for lithium-ion batteries with high energy And power densities. ACS Nano 13:2307–2315Google Scholar
  8. 8.
    Zhang F, Yang X, Xie Y, Yi N, Huang Y, Chen Y (2015) Pyrolytic carbon-coated Si nanoparticles on elastic graphene framework as anode materials for high-performance lithium-ion batteries. Carbon 82:161–167CrossRefGoogle Scholar
  9. 9.
    Hassan FM, Elsayed AR, Chabot V, Batmaz R, Xiao XC, Chen ZW (2014) Subeutectic growth of single-crystal silicon nanowires grown on and wrapped with grapheme nanosheets: high-performance anode material for lithium-ion battery. ACS Appl Mater Interfaces 6:13757–13764PubMedCrossRefGoogle Scholar
  10. 10.
    Su JM, Zhang CC, Chen X, Liu SY, Huang T, Yu AS (2018) Carbon-shell-constrained silicon cluster derived from Al-Si alloy as long-cycling life lithium ion batteries anode. J Power Sources 381:66–71CrossRefGoogle Scholar
  11. 11.
    Jin Y, Li S, Kushima A, Zheng XQ, Sun YM, Xie J, Sun J, Xue WJ, Zhou GM, Wu J, Shi FF, Zhang RF, Zhu Z, So KP, Cui Y, Li J (2017) Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy Environ Sci 10:580–592CrossRefGoogle Scholar
  12. 12.
    Chen S, Chen Z, Luo YJ, Xia M, Cao CB (2017) Silicon hollow sphere anode with enhanced cycling stability by a template-free method. Nanotechnology 28:165404PubMedCrossRefGoogle Scholar
  13. 13.
    Gao H, Xiao LS, Plume I, Xu GL, Ren Y, Zuo XB, Liu YZ, Schulz C, Wiggers H, Amine K, Chen ZH (2017) Parasitic reactions in nanosized silicon anodes for lithium-ion batteries. Nano Lett 17:1512–1519PubMedCrossRefGoogle Scholar
  14. 14.
    Ma BJ, Lu B, Luo J, Deng XL, Wu ZY, Wang XY (2018) The hollow mesoporous silicon nanobox dually encapsulated by SnO2/C as anode material of lithium ion battery. Electrochim Acta 288:61–70CrossRefGoogle Scholar
  15. 15.
    Chae S, Kim N, Ma J, Cho J, Ko M (2017) One-to-one comparison of graphite-blended negative electrodes using silicon nanolayer-embedded graphite versus commercial benchmarking materials for high-energy lithium-ion batteries. Adv Energy Mater 7:1700071CrossRefGoogle Scholar
  16. 16.
    Kim SO, Manthiram A (2015) A facile, low-cost synthesis of high-performance silicon-based composite anodes with high tap density for lithium-ion batteries. J Mater Chem A 3:2399–2406CrossRefGoogle Scholar
  17. 17.
    Luo W, Wang YX, Chou SL, Xu YF, Li W, Kong B, Dou SX, Liu HK, Yang JP (2016) Critical thickness of phenolic resin-based carbon interfacial layer for improving long cycling stability of silicon nanoparticle anodes. Nano Energy 27:255–264CrossRefGoogle Scholar
  18. 18.
    Kim WS, Hwa Y, Shin JH, Yang M, Sohn HJ, Hong SH (2014) Scalable synthesis of silicon nanosheets from sand as an anode for Li-ion batteries. Nanoscale 6:4297–4302PubMedCrossRefGoogle Scholar
  19. 19.
    Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu LB, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol 7:310–315PubMedCrossRefGoogle Scholar
  20. 20.
    Salvatierra RV, Raji ARO, Lee SK, Ji YS, Li L, Tour JM (2016) Silicon nanowires and lithium cobalt oxide nanowires in graphene nanoribbon papers for full lithium ion battery. Adv Energy Mater 6:1600918CrossRefGoogle Scholar
  21. 21.
    Chen SQ, Shen LF, Aken PA, Maier J, Yu Y (2017) Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries. Adv Mater 29:1605650CrossRefGoogle Scholar
  22. 22.
    Hwang TH, Lee YM, Kong BS, Seo JS, Choi JW (2012) Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett 12:802–807PubMedCrossRefGoogle Scholar
  23. 23.
    Hu RZ, Sun W, Chen YL, Zeng MQ, Zhu M (2014) Silicon/graphene based nanocomposite anode: large-scale production and stable high capacity for lithium ion batteries. J Mater Chem A 2:9118–9125CrossRefGoogle Scholar
  24. 24.
    Yang JP, Wang YX, Li W, Wang LJ, Fan YC, Jiang W, Luo W, Wang Y, Kong B, Selomulya C, Liu HK, Dou SX, Zhao DY (2017) Amorphous TiO2 shells: a vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Adv Mater 29:1700523CrossRefGoogle Scholar
  25. 25.
    Chen HD, Hou XH, Qu LN, Qin HQ, Ru Q, Huang Y, Hu SJ, Lam K (2017) Electrochemical properties of core–shell nano-Si@carbon composites as superior anode materials for high-performance Li-ion batteries. J Mater Sci Mater Electron 28:250–258CrossRefGoogle Scholar
  26. 26.
    Kambara M, Kitayama A, Homma K, Hideshima T, Kaga M, Sheem KY, Ishida S, Yoshida T (2014) Nano-composite Si particle formation by plasma spraying for negative electrode of Li ion batteries. J Appl Phys 115:143302CrossRefGoogle Scholar
  27. 27.
    Zhang H, Qin X, Wu J, He YB, Du H, Li B et al (2015) Electrospun core-shell silicon/carbon fibers with internal honeycomb-like conductive carbon framework as anode for lithium ion batteries. J Mater Chem 3:7112–7120CrossRefGoogle Scholar
  28. 28.
    So KS, Lee HJ, Kim TH (2014) Synthesis of silicon nanopowder from silane gas by RF thermal plasma. Phys Status Solidi A 211:310–315CrossRefGoogle Scholar
  29. 29.
    Oumellal Y, Delpuech N, Mazouzi D (2011) The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries. J Mater Chem 21:6201CrossRefGoogle Scholar
  30. 30.
    Seo JH, Kim DU, Nam JS, Hong SH, Sohn SB, Song SM (2007) Radio frequency thermal plasma treatment for size reduction and spheroidization of glass powders used in ceramic electronic devices. J Am Ceram Soc 90:1717–1722CrossRefGoogle Scholar
  31. 31.
    Liu XP, Wang KS, Hu P, Chen Q, Volinsky AA (2015) Spheroidization of molybdenum powder by radio frequency thermal plasma. Int J Miner Metall Mater 22:1212–1218CrossRefGoogle Scholar
  32. 32.
    Kim KH, Choi H, Han C (2016) Tungsten micropowder/copper nanoparticle core/shell-structured composite powder synthesized by inductively coupled thermal plasma process. Metall Matter Trans A 48:1–7Google Scholar
  33. 33.
    Ji-Won O, Hyunwoong N, Soo CY et al (2018) In situ synthesis of bimetallic tungsten-copper nanoparticles via reactive radio-frequency (RF) thermal plasma. Nanoscale Res Lett 13:220CrossRefGoogle Scholar
  34. 34.
    Zhou Y, Tian Z, Fan R, Zhao S, Zhou R, Guo H, Wang Z (2015) Scalable synthesis of Si/SiO2@C composite from micro-silica particles for high performance lithium battery anodes. Powder Technol 284:365–370CrossRefGoogle Scholar
  35. 35.
    Yoshifumi I, Kazunori H, Kaveh E, Katsuhiko S, Guo QX, Horita ZJ, Toshihiro A, David JS (2014) Fabrication of nanograined silicon by high-pressure torsion. J Mater Sci 49:6565–6569CrossRefGoogle Scholar
  36. 36.
    Fu Y, Manthiram A (2013) Silicon nanoparticles supported on graphitic carbon paper as a hybrid anode for Li-ion batteries. Nano Energy 2:1107–1112CrossRefGoogle Scholar
  37. 37.
    Chen HD, Hou XH, Chen FM, Wang SF, Wu B, Ru Q, Qin HQ, Xia YC (2018) Milled flake graphite/plasma nano-silicon@carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature. Carbon 130:433–440CrossRefGoogle Scholar
  38. 38.
    Hu XQ, Huang SM, Hou XH, Chen HD, Qin HQ, Ru Q, Chu BL (2018) A double core-shell structure silicon carbon composite anode material for a Lithium ion battery. Silicon 10:1443–1450CrossRefGoogle Scholar
  39. 39.
    Yu WJ, Liu C, Hou PX, Zhang L, Shan XY, Li F, Cheng HM (2015) Lithiation of silicon nanoparticles confined in carbon nanotubes. ACS Nano 9:5063–5071PubMedCrossRefGoogle Scholar
  40. 40.
    Chen HD, Wang ZL, Hou XH, Fu LJ, Wang SF, Hu XQ, Qin HQ, Wu YP, Ru Q, Liu X, Hu SJ (2017) Mass-producible method for preparation of a carbon-coated graphite@plasma nano-silicon@carbon composite with enhanced performance as lithium ion battery anode. Electrochim Acta 249:113–121CrossRefGoogle Scholar
  41. 41.
    Kim N, Chae S, Ma J, Ko M, Cho J (2017) Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes. Nat Commun 8:812PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Park E, Kim J, Chung DJ, Park MS, Kim H, Kim JH (2016) Si/SiOx-conductive polymer core-shell nanospheres with an improved conducting path preservation for lithium-ion battery. ChemSusChem 9:2754–2758PubMedCrossRefGoogle Scholar
  43. 43.
    Matthew TM, Lee SW, Justin TH, Brian AK, Wang CM, William DN, Cui Y (2012) In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett 13:758–764Google Scholar
  44. 44.
    Yang H, Huang S, Huang X, Fan FF, Liang WT, Liu XH, Chen LQ, Huang JY, Li J, Zhu T, Zhang SL (2012) Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. Nano Lett 12:1953–1958PubMedCrossRefGoogle Scholar
  45. 45.
    Zheng Y, Lin N, Xu TJ, Qian YT (2018) TiO2 coated Si/C interconnected microsphere with stable framework and interface for high-rate lithium storage. Chem Eng J 347:214–222CrossRefGoogle Scholar
  46. 46.
    Xu X, Dou ZF, Gu EL, Si L, Zhou XS, Bao JC (2017) Uniformly-distributed Sb nanoparticles in ionic liquid-derived nitrogen-enriched carbon for highly reversible sodium storage. J Mater Chem A 5:13411–13420CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Mechanical and Electrical Engineering, Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinChina
  2. 2.Guilin Key Laboratory of Microelectronic Electrode Materials and Biological Nanomaterials & National Special Mineral Materials Engineering Technology Research Center & Guangxi Key Laboratory of Superhard MaterialsChina Monferrous Metal (Guilin) Geology and Mining Co., LtdGuilinChina
  3. 3.College of Materials Science and EngineeringGuilin University of TechnologyGuilinChina

Personalised recommendations