Advertisement

Silicon

pp 1–10 | Cite as

Low Velocity Impact and Mechanical Behaviour of Shot Blasted SiC Wire-Mesh and Silane-Treated Aloevera/Hemp/Flax-Reinforced SiC Whisker Modified Epoxy Resin Composites

  • M. Arul Murugan
  • V. Jayaseelan
  • D. Jayabalakrishnan
  • T. Maridurai
  • S. Selva Kumar
  • G. Ramesh
  • V. R. Arun PrakashEmail author
Original Paper
  • 8 Downloads

Abstract

In this research the effect of adding silicon carbide nano whiskers (SiCw) into epoxy resin and the impact of reinforcing surface treated SiC wire-mesh (SiCwm) and woven aloevera/hemp/flax fibers (NF) were studied. The principal aim of this work was demonstrating the importance of adding SiCw (0.5 and 1.0 vol.%) and SiC wire-mesh with economical natural fibres (50 vol.%) and silane surface treatment on natural fibres in mechanical and low velocity impact behavior. The SiCw and natural fibres were surface treated by 3-Aminopropyltriethoxysilane whereas SiC wire-mesh was shot blasted. The composites were cured at room temperature using an aliphatic hardener Triethylenetetramine (TETA). The strength factor results showed that the silane surface modified composite designation ‘H4’ gave highest normalized strength of 98%. The highest tensile and flexural strength of 141 and 240 MPa was observed for silane surface modified composite designation ‘H4’. The low velocity impact damage behavior of ‘H4’ composite designation showed higher resistance against to penetration. Transmission electron microscope (TEM) morphological images showed uniform dispersion of surface-modified SiCw in epoxy resin. Similarly the silane treated natural fibre and shot blasted SiC wire-mesh given improved adhesion with matrix. These high damping polymer composites offers their application in automobile, structural and domestic sector.

Keywords

Polymer matrix composite SiC wire-mesh SiC whiskers Mechanical properties Impact damage characteristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Arun prakash VR, Viswanathan R (2019) Fabrication and characterization of Echinoidea spike particles and Kenaf natural fibre-reinforced Azadirachta-Indica blended epoxy multi-hybrid bio composite. Composites: A 118:317–326CrossRefGoogle Scholar
  2. 2.
    Kim D, Hennigan DJ, Beavers KD (2010) Effect of fabrication processes on mechanical properties of glass fiber reinforced polymer composites for 49 meter (160 foot) recreational yachts. International Journal of Naval Architecture and Ocean Engineering 2(1):45–56CrossRefGoogle Scholar
  3. 3.
    Ramesh C, Manickam C, Maridurai T, Arun Prakash VR (2017) Dry sliding wear characteristics of heat treated and surface modified hematite particles-epoxy particulate composite. Romanian journal of materials 47(3):401–405Google Scholar
  4. 4.
    B Suresha, RM Devarajaiah, T Pasang, C Ranganathaiah, 2013, Investigation of organo-modified montmorillonite loading effect on the abrasion resistance of hybrid composites, materials and design, vol. 47, pp- 750-758Google Scholar
  5. 5.
    Irullappasamy Siva, Jebas Thangiah Winowlin Jappes, Bheemappa Suresha, Investigation on mechanical and tribological behavior of naturally woven coconut sheath-reinforced polymer composites, Polymer composites, vol.33(5), pp. 723–732Google Scholar
  6. 6.
    Junwei G, Zhang Q, Tang Y, Zhang J, Kong J, Dang J, Zhang H, Wang X (2008) Studies on the preparation and effect of the mechanical properties of titanate coupling reagent modified β-sic whisker filled celluloid nano-composites. Surf Coat Technol 202:2891–2896CrossRefGoogle Scholar
  7. 7.
    Yongqiang Guo, Zhaoyuan Lyu, XutongYang, Yuanjin Lu, Kunpeng Ruan, Yalan Wu, Jie Kong and Junwei Gu, Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites, Composites part B: Engineering, vol.164, pp. 732–739CrossRefGoogle Scholar
  8. 8.
    Junwei G, Zhan Q, Dang J, Yin C, Chen S (2011) Preparation and properties of polystyrene/SiCw/SiCp thermal conductivity composites. Journal of applied polymer science, vol 124(1):132–137Google Scholar
  9. 9.
    Karunagaran N, Rajadurai A (2016) Effect of surface treatment on mechanical properties of glass fibre/stainless steel wire mesh reinforced epoxy hybrid composites. J Mech Sci Technol 30(6):2475–2482CrossRefGoogle Scholar
  10. 10.
    Julyes Jaisingh S, Selvam V, Sureshchandra Kumar M, Thigarajan K (2014) Thermo-mechanical behaviour of unsaturated polyester toughened epoxy silane treated iron(III) oxide nano composite. Indian J Eng Mater Sci 16:241–245Google Scholar
  11. 11.
    Arunprakash Vincent , Ramesh G and Madhan Kumar S, 2018 Microwave Shielding Behaviour of Surface Treated MWCNT-epoxy Composites in I & J Band-A Note Colloid and Interface Science Communications 24, PP. 89–92Google Scholar
  12. 12.
    V.R. Arun prakash and R. Viswanathan, microwave shielding behavior of silanized cu and cu-Fe3O4 compound particle-reinforced epoxy resin composite in E, F, I and J band frequencies, Polym Bull (2018) Vol.75 (9), PP. 4207–4225, DOI  https://doi.org/10.1007/s00289-017-2262-1 CrossRefGoogle Scholar
  13. 13.
    Gokul R and Ramesh kumar R (2019) Mechanical and low velocity impact behaviour of intra-ply glass/Kevlar fibre reinforced Nano-silica and micro-rubber modified epoxy resin hybrid composite, Material research express 6:055302–055308CrossRefGoogle Scholar
  14. 14.
    Landowski, M Strugala, 2017, impact damage in SiO2 nanoparticles enhanced epoxy carbon fibre composites. Composites part B Engineering, 113, 91–99CrossRefGoogle Scholar
  15. 15.
    Rahman, M. Mohamaed Puneeth, Aslam DA, 2017, impact properties of glass/Kevlar reinforced with nano clay epoxy composite. Composite part B: Engineering, 107, 50–61Google Scholar
  16. 16.
    Ravandi MT, Tran L (2017) Low velocity impact performance of stitched flax/epoxy composite. Composite part. B: Engineering 117:120–121Google Scholar
  17. 17.
    Arun Prakash VR, Rajadurai A (2016) Thermo-mechanical characterization of siliconized E-glass fibre/hematite particles reinforced epoxy resin hybrid composite. Appl Surf Sci 384(16):99–106Google Scholar
  18. 18.
    Valenca SL, Griza S, De Oliveira VG, Sussuchi EM, De Cunha FGC (2015) Evaluation of the mechanical behavior of epoxy composite reinforced with Kevlar® plain fabric and glass/Kevlar® hybrid fabric. Compos Part B 70:1–8CrossRefGoogle Scholar
  19. 19.
    Arunprakash VR, Rajadurai A (2016) Mechanical, thermal and dielectric characterization of iron(III)oxide reinforced epoxy hybrid composite. Digest Journal of Nanomaterials and Biostructures 11:373–380Google Scholar
  20. 20.
    T. Dinesh, A. Kadirvel and Arunprakash, 2018, Effect of Silane modified E-glass fibre/iron(III)oxide reinforcements on UP blended epoxy resin hybrid composite, silicon, Vol.10 (3), PP.1–12Google Scholar
  21. 21.
    Tsai JL, Huang BH, Cheng YL (2011) Enhancing fracture toughness of glass/epoxy composites for wind blades using silica nanoparticles and rubber particles. Procedia Engineering 14:1982–1987CrossRefGoogle Scholar
  22. 22.
    Hua Y, Linxia G, Premaraj S, Zhang X (2015) Role of interface in the mechanical behaviour of silica/epoxy resin nanocomposites. Materials. 8(6):3519–3531.  https://doi.org/10.3390/ma8063519 CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Guru Raja MN & A.N. Hari Rao, 2013, “Effect of an Angle-Ply Orientation on Tensile Properties of Kevlar/glass Hybrid Composites”, Volume-2, Issue-3, 891–899Google Scholar
  24. 24.
    Rathnakar G, Shivanand H (2013) Fibre orientation and its influence on the flexural strength of glass fibre and graphite fibre reinforced polymer composites. International Journal of Innovative Research in Science Engineering and Technology 2(3):548–552Google Scholar
  25. 25.
    Pontefisso A, Zappalorto M, Quaresimin M (2013) Influence of interphase and filler distribution on the elastic properties of nanoparticle filled polymers. Mech Res Commun 52:92–94CrossRefGoogle Scholar
  26. 26.
    Merizgui T, Hadjajdj A, Mecheri Kious VR, Prakash A, Gaoui B (2018) Effect of magnetic iron(III) oxide particle addition with MWCNTs in Kenaf fibre-reinforced epoxy composite shielding material in ‘E’, ‘F’, ‘I’ and ‘J’ band microwave frequencies. Materials research express.  https://doi.org/10.1088/2053-1591/11f9de
  27. 27.
    Hasselbruch H, Von Hehl A, Zoch HW (2015) Properties and failure behaviour of hybrid wire mesh/carbon fibre reinforced thermoplastic composites under quasistatic tensile load. Mater Des 66:429–436CrossRefGoogle Scholar
  28. 28.
    V R Arun Prakash and Julyes Jaisingh (2018) Mechancial strength behaviour of silane treated E-glass fibre/Al6061 & SS-304 wire mesh-reinforced epoxy resin hybrid composite, Silicon, Vol.10, PP-2279-2286Google Scholar
  29. 29.
    Yang L, Xu G, Guo Y, Ma T, Zhong X, Zhang Q, Junwei G (2018) Fabrication. proposed model and simulation predictions on thermally conductive hybrid cyanate ester composites with boron nitride fillers, Composites Part A: Applied Science and Manufacturing 107:570–578Google Scholar
  30. 30.
    Junwei G, Lv Z, Wu Y, Guo Y, Tian L, Qiu H, Li W, Zhang Q (2017) Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method. Compos A: Appl Sci Manuf 94:209–216CrossRefGoogle Scholar
  31. 31.
    Silva H, Ferreira JA, Costa JD, Capela C (2013) A study of mixed mode inter-laminar fracture on nano clay enhanced epoxy/glass fiber composites. Ciencia & Tecnologia dos Materiais 25:92–97CrossRefGoogle Scholar
  32. 32.
    Sokolova OA, Kuhn M, Palkowski H (2012) Deep drawing properties of light weight steel/polymer/steel sandwich composites. Archives of Civil and Mechanical Engineering 12:105–112CrossRefGoogle Scholar
  33. 33.
    Arun Prakash VR, Rajadurai A (2017) Inter laminar shear strength behavior of acid, base and silane treated E-glass fibre epoxy resin composites on drilling process. Defence Technology 13:40–46CrossRefGoogle Scholar
  34. 34.
    Domun N, Hadavinia H, Zhang T, Sainsbury T, Liaghat GH, Vahid S (2015) Improving the fracture toughness and the strength of epoxy using nanomaterials – a review of the current status. Nanoscale 7:10294–10329CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • M. Arul Murugan
    • 1
  • V. Jayaseelan
    • 2
  • D. Jayabalakrishnan
    • 3
  • T. Maridurai
    • 4
  • S. Selva Kumar
    • 1
  • G. Ramesh
    • 5
  • V. R. Arun Prakash
    • 6
    Email author
  1. 1.Department of Automobile EngineeringB.S.Abdur Rahman UniversityChennaiIndia
  2. 2.Department of Mechanical Engineering, Prathyusha Engineering CollegeAnna UniversityChennaiIndia
  3. 3.Department of Mechanical Engineering, Sriram Engineering CollegeAnna UniversityChennaiIndia
  4. 4.Department of Mechanical EngineeringSaveetha School of EngineeringChennaiIndia
  5. 5.Department of Mechanical EngineeringMEA Engineering collegeMalapuramIndia
  6. 6.Department of Mechanical Engineering, J.N.N Institute of EngineeringAnna UniversityChennaiIndia

Personalised recommendations