Advertisement

Silicon

pp 1–7 | Cite as

Analysis of the Single-Crystalline Silicon Photovoltaic (PV) Module Performances Under Low γ - Radiation from Radioactive Source

  • Adama OuedraogoEmail author
  • Ladifata Mogmenga
  • Nébon Bado
  • Thierry Sikoudouin Maurice Ky
  • Dieudonné Joseph Bathiebo
Original Paper
  • 7 Downloads

Abstract

The present paper is about an experimental evaluation of the terrestrial silicon single-crystalline solar PV module behavior under low gamma radiation. The simultanous proliferation of radioactive sources in Burkina Faso dominated by gamma type and the photovoltaic (PV) systems installations in both urban and rural areas justify this study. There is also high background radiation compared to normal in some region of the country. It has been shown that the photocurrent and the electric power increase while the photovoltage stays constant for an extremely low gamma radiation doses. This work proves that long time exposition to any low radiation can cause the reduction of the performance of the solar PV module. However for greater values of the dose, the photocurrent, the photovoltage and the electric power decrease. Hence, it is so important to protect PV equipments against gamma radiation by adjusting the PV installation height from the ground where high background radiation is notified or by putting reinforced concrete at their bottom faces. The two ways can be combinated adding the respect to radiation protection principle As Low As Reasonably Achievable (ALARA).

Keywords

Single-Crystalline silicon PV solar module Low gamma (γ) - radiation Dose rate Dose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    (2014) IEA Publications. Technology roadmap solar photovoltaic energy. Technical report, International Energy Agency – IEAGoogle Scholar
  2. 2.
    Chander S, Purohit A, Sharma A, Nehra SP, Dhaka MS (2015) A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature. Energy Reports 1:104–109CrossRefGoogle Scholar
  3. 3.
    Ouedraogo A, Bazyomo SDYB, Ouedraogo S, Razakou A, Bathiebo DJ (2018) Improvement of the silicon solar cell performance by integration of an electric field source in the solar cell or solar module system. Smart Grid and Renewable Energy 9(12):285–298CrossRefGoogle Scholar
  4. 4.
    Zoungrana M, Dieng B, Lemrabolt OH, Toure F, Ould El Moujtaba MA, Sow ML, Sissoko G (2012) External electric field influence on charge carriers and electrical parameters of polycrystalline silicon solar cell. Res J Appl Sci Eng Technol 4:2967–2972Google Scholar
  5. 5.
    Combari DU, Ramde EW, Sourabie M, Zoungrana I, Zerbo I, Bathiebo DJ (2018) Performance investigation of a silicon photovoltaic module under the influence of a magnetic field. Adv Cond Matter Phys Hindawi 2018:1–8CrossRefGoogle Scholar
  6. 6.
    Sourabie I, Zerbo I, Zoungrana M, Combari DU, Bathiebo DJ (2017) Effect of incidence angle of magnetic field on the performance of a polycrystalline silicon solar cell under multispectral illumination. Smart Grid and Renewable Energy 8:325–335CrossRefGoogle Scholar
  7. 7.
    Zerbo I, Zoungrana M, Sere AD, Ouedraogo F, Sam R, Zouma B, Zougmore F (2011) Influence d’une onde électromagnétique sur une photopile au silicium sous éclairement multi spectral en régime statique. Rev Energ Renouv 14(3):517–532Google Scholar
  8. 8.
    Zerbo I, Zoungrana M, Sere AD, Zougmore F (2012) Silicon solar cell under electromagnetic wave in steady state : effect of the telecommunication source’s power of radiation. IOP Conf Ser Mater Sci Eng 29:012–019. 1st International Symposium on Electrical Arc and Thermal Plasmas in Africa (ISAPA)CrossRefGoogle Scholar
  9. 9.
    Ouedraogo A, Barandja I, Zerbo VDB, Zoungrana M, Ramde EW, Bathiebo DJ (2017) A theoretical study of radio wave attenuation through a polycrystalline silicon solar cell. Turk J Phys 41:314–325CrossRefGoogle Scholar
  10. 10.
    Nebon B, Drame MS, Sall SM, Korgo B, Niang DN, Kieno PF, Bathiebo DJ (2018) Intra - seasonal and annual variation of aerosols and their radiative impact in the sahelian zone of burkina faso. Atmospheric and Climate Sciences 9:62–74CrossRefGoogle Scholar
  11. 11.
    Korgo B, Roger J, Bathiebo J (2013) Climatology of air mass trajectories and aerosol optical thickness over ouagadougou. Global Journal of Pure and Applied Mathematics 19:169–181Google Scholar
  12. 12.
    Ouedraogo A, Guengane H, Imbga K, Bathiebo DJ (2019) Analysis of external load resistance influence on the single-crystalline silicon photovoltaic module (pv). J Fundament Appl Sci 11(2):663–674Google Scholar
  13. 13.
    Beogo CE, Cisse OI, Kanazoe AR, Maiga AR, Zougmore F (2019) Preliminary results measuring the gamma dose rate distribution in north eastern Burkina Faso where the concentration of uranium in the soil is elevated. International Journal of Applied and Natural Sciences (IJANS) 8(5):1–8Google Scholar
  14. 14.
    Taylor SJ, Yamaguchi M, Imaizumi M, Ito T (1997) Improved model of radiation damage to silicon solar cells. J Appl Phys 82(7):3627–3629CrossRefGoogle Scholar
  15. 15.
    Taylor SJ, Yamaguchi M, Yamaguchi T, Watanabe S, Ando K, Matsuda S, Hisamatsu T, Kim SI (1998) Comparison of the effects of electron and proton irradiation on n +,−pp + silicon diodes. J Appl Phys 83(9):4620–4627CrossRefGoogle Scholar
  16. 16.
    William C, Cooley C, Robert JJ (1963) Handbook of space radiation effectson solar cell power systems. U.S. Government research and development reports index (USGRDR-I)Google Scholar
  17. 17.
    Ghiassi-nejad M, Mortazavi SMJ, Cameron JR, Niroomand rad A, Karam PA (2002) Very high background radiation areas of ramsar, Iran Preliminary biological studies. Health Phys 82(1):87–93CrossRefGoogle Scholar
  18. 18.
    (2018) Direction de la Communication et des Relations publiques de la Gendarmerie Nationale. Ouagadougou : “une jauge radioactive” tres dangereuse voir mortelle recherchée par la gendarmerie in netafrique.netGoogle Scholar
  19. 19.
    Markvart T (1990) Review, radiation damage in solar cells. J Mater Sci-Mater El 1:1–12CrossRefGoogle Scholar
  20. 20.
    (2014) Iternational Atomic Energy Agency (IAEA). Radiation Protection and Safety of Radiation Sources : International Basic Safety Standards. Number GSR Part 3 in IAEA Safety Standards series. IAEA Safety StandardsGoogle Scholar
  21. 21.
    CIPR (2007) The 2007 Recommandations of the International Commission on Radiological Protection. Number 103 in ICPR Publication. ElsevierGoogle Scholar
  22. 22.
    IAEA (2000) Calibration of radiation protection monitoring instrucments. Number 16 in IAEA safety reports series IAEAGoogle Scholar
  23. 23.
    Le Sech D, Ngo C (2010) Physique nucl’eaire, Des quarks aux applications. DUNODGoogle Scholar
  24. 24.
    Summers GP, Burke EA, Xapsos MA (1995) Displacement damage analogs to ionizing radiation effects. Radiation Measurements, Elsevier Science Ltd 24(1):1–8CrossRefGoogle Scholar
  25. 25.
    Krishnan S, Sanjeev G, Pattabi M (2008) Electron irradiation effects on the schottky diode characteristics of p-si. Nucl Inst Methods Phys Res B 266:621–624CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratory of Thermal and Renewable Energies (L.E.T.RE), Department of Physics, Unit of Training and Research in Pure and applied Sciences (UFR-SEA)University Ouaga I Prof. Joseph KI-ZERBOOuagadougouBurkina Faso
  2. 2.National Authority for Radiation Protection and Nuclear Safety (ARSN)Ministry of Environment of Burkina FasoOuagadougouBurkina Faso

Personalised recommendations