Advertisement

Silicon

pp 1–7 | Cite as

Frequency and Voltage Dependence of the Dielectric Properties of Ni/SiO2/P-Si (MOS) Structure

  • Ragab MahaniEmail author
  • A. Ashery
  • Mohamed M. M. Elnasharty
Original Paper

Abstract

The frequency (10 - 107 Hz), temperature (303-363 K) or /and bias voltage (−2 to 2 V) dependence of the dielectric properties of Ni/SiO2/p-Si (MOS), have been investigated using the broadband dielectric spectrometer (BDS). Molecular structure and microstructure have been characterized using X - ray diffraction (XRD) and scanning electron microscope (SEM), respectively. From the experimental results, the capacitance–frequency (C-f) characteristics for MOS structure described as a series capacitance (Cs) in the oxide layer (SiO2) and a depletion layer in the semiconductor (p-Si). Interestingly, the capacitance over the whole frequency range for all temperatures are hardly distinguished particularly in the accumulation region, exploring enhancements of the electrical performance for MOS structure. Value of the flat band voltage (VFB) separating the accumulation and depletion regions was determinate at −0.5 V. Furthermore, thickness of the interfacial layer (SiO2) found to be ~580 Å. Both C and ε' found to be strongly temperature and frequency dependent particularly at high temperatures and low frequencies due to creation of an inhomogeneous layer at the SiO2/p-Si interface, exploring Maxwell-Wagner or interfacial polarization. Variation of ε' and ε'' with frequency revealed to the existence of surface states or traps (Nss) located at interfacial layer (SiO2), dipole or/and surface polarization. The average conductivity value of MOS structure found to be 1.2 × 10−7 S/cm, exploring semiconducting feature.

Keywords

MOS structure Accumulation region SiO2 Permittivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge the National Research Centre (NRC), Cairo, Egypt for supporting this work.

References

  1. 1.
    Simon MS, Kwok KN (2007) Physics of semiconductor devices. John Wiley & Sons, New YorkGoogle Scholar
  2. 2.
    Seo YJ, Kim KC, Kim TG, Sung YM, Cho HY, Joo MS (2008) Analysis of electronic memory traps in the oxide-nitride-oxide structure of a polysilicon-oxide-nitride-oxide-semiconductor flash memory. Appl Phys Lett 92:132104CrossRefGoogle Scholar
  3. 3.
    Har-Lavan R, Ron I, Thieblemont F, Cahen D (2009) Toward metal-organic insulator-semiconductor solar cells, based on molecular monolayer self-assembly on n-Si. Appl Phys Lett 94:043308CrossRefGoogle Scholar
  4. 4.
    Lin CH, Liu CW (2010) Metal-insulator-semiconductor photodetectors. Sensors 10:8797–8826PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Baraz N, Yücedağ İ, Azizian-Kalandaragh Y, Ersöz G, Orak İ, Altındal Ş, Akbari B, Akbari H (2017) Electric and dielectric properties of au/ZnS-PVA/n-Si (MPS) structures in the frequency range of 10–200 kHz. J Electron Mater 46:4276–4286CrossRefGoogle Scholar
  6. 6.
    Nicollian EH, Brews J.R (1982) MOS physics and technology, John Wiley and Sons, New YorkGoogle Scholar
  7. 7.
    Chattopadhyay P, RayChaudhuri B (1993). Solid-State Elect 36:605–610CrossRefGoogle Scholar
  8. 8.
    Büyükbaş Uluşan A, Tataroğlu A (2018) Frequency–dependent dielectric parameters of au/TiO2/nSi (MIS) structure. Silicon 10(5):2071–2077CrossRefGoogle Scholar
  9. 9.
    Acar FZ, Buyukbas-Ulusan A, Tataroglu A (2018) Analysis of interface states in au/ZnO/p-InP (MOS) structure. J Mater Sci Mater Electron 29:12553–12560CrossRefGoogle Scholar
  10. 10.
    Lin CH, Yeh WT, Chan CH, Lin CC (2012) Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes, Nanoscale res. Lett 7:343Google Scholar
  11. 11.
    Afsal M, Wang CY, Chu LW, Ouyang H, Chen LJ (2012) Highly sensitive metal-insulator-semiconductor UV photodetectors based on ZnO/SiO2 core-shell nanowires. J Mater Chem 22:8420–8425CrossRefGoogle Scholar
  12. 12.
    Malik A, Grimalsky V, Jacome AT, Durini D (2004) Theoretical modeling and experimental investigation of MIS radiation sensor with giant internal signal amplification, Sens. Actuators A Phys 114:319–326CrossRefGoogle Scholar
  13. 13.
    Gomila G (1999) Effects of interface states on the non-stationary transport properties of Schottky contacts and metal-insulator-semiconductor tunnel diodes. J Phys D Appl Phys 32:64CrossRefGoogle Scholar
  14. 14.
    Hudait KM, Krupanidhi SB (2000) Effects of thin oxide in metal-semiconductor and metal- insulator- semiconductor epi-GaAs Schottky diodes. Solid State Electron 44:1089–1097CrossRefGoogle Scholar
  15. 15.
    Bayindir M, Sorin F, Abouraddy AF, Viens J, Hart SD, Joannopoulos JD (2004) Metal-insulator-semiconductor optoelectronic fibres. Nature 431:826–829PubMedCrossRefGoogle Scholar
  16. 16.
    Saglam M, Ayyildiz E, Gümüs A, Türüt A, Efeoglu H, Tüzemen S (1996) Series resistance calculation for the metal-insulator-semiconductor schottky barrier diodes. Appl. Phys A 62:269–273Google Scholar
  17. 17.
    Kim H, Hong S-H, Chang Park Y, Lee J, Jeon C-H, Kim J (2014) Rapid thermal-treated transparent electrode for photodiode applications. Mater Lett 115:45–48CrossRefGoogle Scholar
  18. 18.
    Asghar M, Mahmood K, Faisal M, Hasan MA (2013) Electrical characterization of au/ZnO/Si Schottky contact J. Physics, Conference Series 439:012030CrossRefGoogle Scholar
  19. 19.
    Asar YS, Asar T, Altındal Ş, Özçelik S (2015) Dielectric spectroscopy studies and ac electrical conductivity on (AuZn)/TiO2/p-GaAs(110) MIS structures. Philos Mag 95:2885–2898CrossRefGoogle Scholar
  20. 20.
    Bilkan Ç, Altındal Ş, Azizian-Kalandaragh Y (2017) Investigation of frequency and voltage dependence surface states and series resistance profiles using admittance measurements in Al/p-Si with Co3O4-PVA interlayer structures. Phys B Condens Matter 515:28–33CrossRefGoogle Scholar
  21. 21.
    Nikravan A, Badali Y, Altındal Ş, Uslu I, Orak I (2017) On the frequency and voltage-dependent profiles of the surface states and series resistance of au/ZnO/n-Si structures in a wide range of frequency and voltage. J Electron Mater 46:5728–5736CrossRefGoogle Scholar
  22. 22.
    Chand S, Kumar J (1996) Current transport in PdzSi/n-Si(l00) Schottky barrier diodes at low temperatures. Appl Phys A Mater Sci Process 63:171–178Google Scholar
  23. 23.
    Ashery A, Farag AAM, Mahani R (2010) Structural, electrical and magnetic characterizations of Ni/cu/p-Si Schottky diodes prepared by liquid phase epitaxy. Microelectron Eng 87:2218–2224CrossRefGoogle Scholar
  24. 24.
    Thron AM, Greene PK, Liu K, Van Benthem K (2012) Structural changes suring the reaction of Ni thin films with (100) silicon substrates. Acta Mater 60:2668–2678CrossRefGoogle Scholar
  25. 25.
    Lee P-H, Chang C-C (2007) Spectroscopic characterization of Ni films on sub-10-nm silica layers: thermal metamorphosis and chemical bonding. Surf Sci 601:362–375CrossRefGoogle Scholar
  26. 26.
    Jain VV (2007) Microstructure and properties of copper thin films on silicon substrates MSc. A&M University, TexasGoogle Scholar
  27. 27.
    Chelkowski A (1980) Dielectric physics. Elsevier, AmsterdamGoogle Scholar
  28. 28.
    Popescu M, Bunget I (1984). Physics of Solid DielectricsGoogle Scholar
  29. 29.
    Razouk R, Deal BJ (1979) Dependence of Interface state density on silicon thermal oxidation process variables. Electrochem Soc 126:1573 Elsevier, Amsterdam, pp.206-245, 82-291CrossRefGoogle Scholar
  30. 30.
    Bentarzi H (2011) Transport in metal-oxide-semiconductor structures, engineering materials. Springer-Verlag, BerlinCrossRefGoogle Scholar
  31. 31.
    Nicollian EH, Goetzberger A (1965) MOS conductance technique for measuring surface state parameters. Appl Phys Lett 7:216CrossRefGoogle Scholar
  32. 32.
    Prabakar K, Narayandass SK, Mangalaraj D (2003) Dielectric properties of Cd0.6Zn0.4Te thin films. Phys Stat Sol (a) 199(3):507CrossRefGoogle Scholar
  33. 33.
    Tataroğlu A, Yildirim M, Baran HM (2014) Dielectric characteristics of gamma irradiated au/SnO2/n-Si/au (MOS) capacitor. Mater Sci Semicond Process 28:89–93CrossRefGoogle Scholar
  34. 34.
    Sengwa RJ, Dhatarwal P, Choudhary S (2015) Curr. Appl. Phys 15:135–143Google Scholar
  35. 35.
    Wagner RW (1914) Erklarung der dilectricshen-narchwirkugen auf grund maxwellscher vorstellungen. Arch Electrotech 2:371CrossRefGoogle Scholar
  36. 36.
    Sillars RW (1937) The properties of dielectrics containing semiconducting particles various shapes. Inst Elect Eng 80:378Google Scholar
  37. 37.
    Sattar AA, Samy AR (2003) Dielectric properties of rare earth substituted cu–Zn ferrites. Phys Status Solidi A 200:415–422CrossRefGoogle Scholar
  38. 38.
    Prabakar K, Narayandass Sa K, Mangalaraj D (2003) Dielectric properties of Cd0. 6Zn0. 4Te thin films. Phys Status Solidi A 199:507–514CrossRefGoogle Scholar
  39. 39.
    Symth CP (1955) Dielectric behavior and structure. McGraw-Hill, New YorkGoogle Scholar
  40. 40.
    Ranga Raju MR, Choudhary RNP, Ram S (2003) Dielectric and electrical properties of Sr5EuCr3Nb7O30 nanoceramics prepared using a novel chemical route. Phys Stat Sol a 239:480CrossRefGoogle Scholar
  41. 41.
    Singh V, Kulkarni AR, Rama Mohan TR (2003). J Appl Polym Sci 90:3602CrossRefGoogle Scholar
  42. 42.
    Mazen SA, Zaki HM (2003) Effect of tetra ionic substitution on the dielectric properties of cu-ferrite. Phys Stat Sol (a) 199:305–320CrossRefGoogle Scholar
  43. 43.
    Maurya D, Kumar J, Shripal (2005) Dielectric- spectroscopic and a.c. conductivity studies on layered Na2-XKXTi3O7 (X=0.2, 0.3, 0.4) ceramics. J Phys Chem Solids 66:1614–1620CrossRefGoogle Scholar
  44. 44.
    Bengl S, Bülbül MM (2013) Electrical and dielectric properties of Al/HfO2/p-Si MOS device at high temperatures. Curr Appl Phys 13:1819–1825CrossRefGoogle Scholar
  45. 45.
    Arslan E, Şafak Y, Taşçioğlu İ (2010) Frequency and temperature dependence of the dielectric and AC electrical conductivity in (Ni/au)/AlGaN/AlN/GaN heterostructures. Microelectron Eng 87:1997–2001CrossRefGoogle Scholar
  46. 46.
    Dutta P, Biswas S, De SK (2002) Dielectric- relaxation in polyaniline–polyvinyl alcohol composites. Mater Res Bull 37:193–200CrossRefGoogle Scholar
  47. 47.
    Bidault O, Goux P, Kchikech M, Belkaoumi M, Maglione M (1994) Space- charge relaxation in perovskites. Phys. Rev B 49:7868–7873CrossRefGoogle Scholar
  48. 48.
    Abdel-wahab FA, Maksoud HM, Kotkata MF (2006) Electrical conduction and dielectric relaxation in semiconductor SeSm0.005. J Phys D Appl Phys 39:190–195CrossRefGoogle Scholar
  49. 49.
    Sze SM (1981) Physics of semiconductor devices, second ed., John Wiley & Sons, New YorkGoogle Scholar
  50. 50.
    Jonscher A K (1980) Physics of Thin Films, edited by M. H. Francombe, Vol. 11, Academic Press, London and New York, 205Google Scholar
  51. 51.
    Jonscher AK (1977) The universal dielectric response. Nature 267:673–679CrossRefGoogle Scholar
  52. 52.
    Funke K (1993). Prog. Solid -State Chem 22:111–195CrossRefGoogle Scholar
  53. 53.
    Panigrahi SC, Piyush RD, Parida BN, Padhee R, Choudhary RNP (2014) Dielectric and electrical properties of gadolinium-modified lead-zirconate-titanate system. J Alloy Compd 604:73–82CrossRefGoogle Scholar
  54. 54.
    Çetinkaya HG, Yıldırım M, Durmus P, Altındal S (2017) Diode - to-diode variation in dielectric parameters of identically prepared metal-ferroelectric-semiconductor structures. J. Alloy. Compd 728:896–901CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Microwave Physics and Dielectrics DepartmentNational Research CentreGizaEgypt
  2. 2.Solid State Electronics Laboratory, Solid State Physics DepartmentNational Research CentreGizaEgypt

Personalised recommendations