Advertisement

Silicon

pp 1–10 | Cite as

Impact of Si and Mg on Microstructural and Magnetic Behavior of Fe-Co-Ni (Mg-Si)x (x = 0.00,0.1,0.2) Multicomponent Alloys

  • Priyanka Sahu
  • Atul Singh Bagri
  • M. D. Anoop
  • Manoj Kumar
  • Vinod KumarEmail author
Original Paper
  • 38 Downloads

Abstract

The multicomponent alloys, namely FeCoNi(Mg-Si)x (x = 0.00,0.1,0.2) were prepared by mechanical alloying (MA) followed by conventional sintering at 900 °C. The impact of magnesium (Mg) and silicon (Si) on the microstructure and magnetic properties of the FeCoNi(Mg-Si)x alloys were examined by a systematic investigation of the phase, microstructure, mechanical and magnetic properties. It was found that the higher molar ratio of Si and Mg content gives rise to the formation of oxides in greater extent in case of FeCoNi(Mg-Si)0.0 and FeCoNi(Mg-Si)0.1 alloys. Surface morphology of the multicomponent alloys consists of a well-separated FCC (grey), intermetallic (dark grey) and oxides (black) regions. The Vickers hardness has an approximately linear gain with Si and Mg content. The prepared samples show ferromagnetic nature and the value of maximum saturation magnetization (Ms) of 142.43 emu/g and considerably low Hc of 30.29 Oe was found to be in case of FeCoNi(Mg-Si)0.1 alloy. The correlation between the structural evolution and magnetic properties of multicomponent alloys has been discussed in detail.

Keywords

Sintering Mechanical alloying Multicomponent alloys Microstructure Magnetic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

VK thanks Board of Research in nuclear Science (BRNS) project no. 34/20/01/2014-BRNS-0339, Mumbai, India for financial support.

References

  1. 1.
    Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375:213–218CrossRefGoogle Scholar
  2. 2.
    Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6(5):299–303CrossRefGoogle Scholar
  3. 3.
    Jien-Wei YEH (2006) Recent progress in high entropy alloys. Ann Chim Sci Mater 31(6):633–648CrossRefGoogle Scholar
  4. 4.
    Miracle DB, Senkov ON (2017) A critical review of high entropy alloys and related concepts. Acta Mater 122:448–511CrossRefGoogle Scholar
  5. 5.
    Chen S, Yang X, Dahmen K, Liaw P, Zhang Y (2014) Microstructures and crackling noise of AlxNbTiMoV high entropy alloys. Entropy 16(2):870–884CrossRefGoogle Scholar
  6. 6.
    Sheng GUO, Liu CT (2011) Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci Mater Int 21(6):433–446CrossRefGoogle Scholar
  7. 7.
    Tsai MH, Yeh JW (2014) High-entropy alloys: a critical review. Mater Res Lett 2(3):107–123CrossRefGoogle Scholar
  8. 8.
    Osaka T, Takai M, Hayashi K, Ohashi K, Saito M, Yamada K (1998) A soft magnetic CoNiFe film with high saturation magnetic flux density and low coercivity. Nature 392(6678):796–798CrossRefGoogle Scholar
  9. 9.
    Gómez-Esparza CD, Baldenebro-López FJ, Santillán-Rodríguez CR, Estrada-Guel I, Matutes-Aquino JA, Herrera-Ramírez JM, Martínez-Sánchez R (2014) Microstructural and magnetic behavior of an equiatomic NiCoAlFe alloy prepared by mechanical alloying. J Alloys Compd 615:S317–S323CrossRefGoogle Scholar
  10. 10.
    Ma SG, Zhang Y (2012) Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater Sci Eng A 532:480–486CrossRefGoogle Scholar
  11. 11.
    Guo S, Ng C, Wang Z, Liu CT (2014) Solid solutioning in equiatomic alloys: limit set by topological instability. J Alloys Compd 583:410–413CrossRefGoogle Scholar
  12. 12.
    Ye GX, Wu B, Zhang CH, Chen T, Lin MH, Xie YJ, ... & Wang C (2012) Study of solidification microstructures of multi-principal high-entropy alloy FeCoNiCrMn by using experiments and simulation. Adv Mater Res, 399: 1746–1749Google Scholar
  13. 13.
    Maulik O, Kumar V (2015) Synthesis of AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying. Mater Charact 110:116–125CrossRefGoogle Scholar
  14. 14.
    Praveen S, Murty BS, Kottada RS (2012) Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater Sci Eng A 534:83–89CrossRefGoogle Scholar
  15. 15.
    Fu Z, Chen W, Xiao H, Zhou L, Zhu D, Yang S (2013) Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA–SPS technique. Mater Des 44:535–539CrossRefGoogle Scholar
  16. 16.
    Yuhu F, Yunpeng Z, Hongyan G, Huimin S, Li H (2013) AlNiCrFexMo0.2CoCu high entropy alloys prepared by powder metallurgy. Rare Metal Mater Eng 42(6):1127–1129CrossRefGoogle Scholar
  17. 17.
    Ji W, Wang W, Wang H, Zhang J, Wang Y, Zhang F, Fu Z (2015) Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics 56:24–27CrossRefGoogle Scholar
  18. 18.
    Varalakshmi S, Kamaraj M, Murty BS (2008) Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J Alloys Compd 460(1–2):253–257CrossRefGoogle Scholar
  19. 19.
    Sriharitha R, Murty BS, Kottada RS (2013) Phase formation in mechanically alloyed AlxCoCrCuFeNi (x = 0.45,1, 2.5, 5 Mol) high entropy alloys. Intermetallics 32:119–126CrossRefGoogle Scholar
  20. 20.
    Qiu XW (2013) Microstructure and properties of AlCrFeNiCoCu high entropy alloy prepared by powder metallurgy. J Alloys Compd 555:246–249CrossRefGoogle Scholar
  21. 21.
    Praveen S, Basu J, Kashyap S, Kottada RS (2016) Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures. J Alloys Compd 662:361–367CrossRefGoogle Scholar
  22. 22.
    Mane RB, Panigrahi BB (2018) Sintering mechanism of CoCrFeMnNi high-entropy alloy powders. Powder Metall 61(2):131–138CrossRefGoogle Scholar
  23. 23.
    German RM (1984) Powder metallurgy science. Metal Powder Industries Federation, PrincetonGoogle Scholar
  24. 24.
    Schaffer JP, Saxena A, Antolovich SD, Sanders TH, Warner SB (1995) The science and design of engineering materials. Irwin, Chicago, p 577Google Scholar
  25. 25.
    Gupta M, Wong WLE (2005) Enhancing overall mechanical performance of metallic materials using two-directional microwave assisted rapid sintering. Scr Mater 52(6):479–483CrossRefGoogle Scholar
  26. 26.
    An Z, Jia H, Wu Y, Rack PD, Patchen AD, Liu Y, Liaw PK (2015) Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition. Mater Res Lett 3(4):203–209CrossRefGoogle Scholar
  27. 27.
    Park N, Watanabe I, Terada D, Yokoyama Y, Liaw PK, Tsuji N (2015) Recrystallization behavior of CoCrCuFeNi high-entropy alloy. Metall Mater Trans A 46(4):1481–1487CrossRefGoogle Scholar
  28. 28.
    Santodonato LJ, Zhang Y, Feygenson M, Parish CM, Gao MC, Weber RJ, Liaw PK (2015) Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat Commun 6:5964CrossRefGoogle Scholar
  29. 29.
    Ren B, Liu ZX, Li DM, Shi L, Cai B, Wang MX (2010) Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system. J Alloys Compd 493(1–2):148–153CrossRefGoogle Scholar
  30. 30.
    Cheng KC, Chen JH, Stadler S, Chen SH (2019) Properties of atomized AlCoCrFeNi high-entropy alloy powders and their phase-adjustable coatings prepared via plasma spray process. Appl Surf Sci 478:478–486CrossRefGoogle Scholar
  31. 31.
    Ferrari V, Wolf W, Zepon G, Coury FG, Kaufman MJ, Bolfarini C, Botta WJ (2019) Effect of boron addition on the solidification sequence and microstructure of AlCoCrFeNi alloys. J Alloys Compd 775:1235–1243CrossRefGoogle Scholar
  32. 32.
    Liu Y, Chen J, Li Z, Wang X, Fan X, Liu J (2019) Formation of transition layer and its effect on mechanical properties of AlCoCrFeNi high-entropy alloy/Al composites. J Alloys Compd 780:558–564CrossRefGoogle Scholar
  33. 33.
    Lee KS, Kang JH, Lim KR, Na YS (2017) Influence of compressive strain on the microstructural evolution of an AlCoCrFeNi high entropy alloy. Mater Charact 132:162–168CrossRefGoogle Scholar
  34. 34.
    Wu Z, Bei H, Otto F, Pharr GM, George EP (2014) Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46:131–140CrossRefGoogle Scholar
  35. 35.
    Wang WR, Wang WL, Yeh JW (2014) Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J Alloys Compd 589:143–152CrossRefGoogle Scholar
  36. 36.
    Roy U, Roy H, Daoud H, Glatzel U, Ray KK (2014) Fracture toughness and fracture micromechanism in a cast AlCoCrCuFeNi high entropy alloy system. Mater Lett 132:186–189CrossRefGoogle Scholar
  37. 37.
    Zuo TT, Li RB, Ren XJ, Zhang Y (2014) Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy. J Magn Magn Mater 371:60–68CrossRefGoogle Scholar
  38. 38.
    Zhang Y, Zuo T, Cheng Y, Liaw PK (2013) High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci Rep 3:1455CrossRefGoogle Scholar
  39. 39.
    Lucas MS, Mauger L, Munoz JA, Xiao Y, Sheets AO, Semiatin SL, Turgut Z (2011) Magnetic and vibrational properties of high-entropy alloys. J Appl Phys 109(7):07E307CrossRefGoogle Scholar
  40. 40.
    Singh S, Wanderka N, Kiefer K, Siemensmeyer K, Banhart J (2011) Effect of decomposition of the Cr–Fe–co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties. Ultramicroscopy 111(6):619–622CrossRefGoogle Scholar
  41. 41.
    Huang S, Li W, Li X, Schönecker S, Bergqvist L, Holmström E, Vitos L (2016) Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys. Mater Des 103:71–74CrossRefGoogle Scholar
  42. 42.
    Zuo T, Zhang M, Liaw PK, Zhang Y (2018) Novel high entropy alloys of Fex Co1-xNiMnGa with excellent soft magnetic properties. Intermetallics 100:1–8CrossRefGoogle Scholar
  43. 43.
    Wang J, Zheng Z, Xu J, Wang Y (2014) Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi(Nb) high entropy alloys. J Magn Magn Mater 355:58–64CrossRefGoogle Scholar
  44. 44.
    Tariq NH, Naeem M, Hasan BA, Akhter JI, Siddique M (2013) Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy. J Alloys Compd 556:79–85CrossRefGoogle Scholar
  45. 45.
    Prasad NK, Kumar V (2016) Structure–magnetic properties correlation in mechanically alloyed nanocrystalline Fe–co–Ni–(mg–Si)x alloy powders. J Mater Sci Mater Electron 27(10):10136–10146CrossRefGoogle Scholar
  46. 46.
    Sahu P, Solanki S, Dewangan S, Kumar V (2019) Microstructure and magnetic behavior of FeCoNi (Mn–Si) x (x = 0.5, 0.75, 1.0) high-entropy alloys. J Mater Res 34(5):829–840CrossRefGoogle Scholar
  47. 47.
    Zhuang YX, Xue HD, Chen ZY, Hu ZY, He JC (2013) Effect of annealing treatment on microstructures and mechanical properties of FeCoNiCuAl high entropy alloys. Mater Sci Eng A 572:30–35CrossRefGoogle Scholar
  48. 48.
    Mishra RK, Shahi RR (2018) Effect of annealing conditions and temperatures on phase formation and magnetic behaviour of CrFeMnNiTi high entropy alloy. J Magn Magn Mater 465:169–175CrossRefGoogle Scholar
  49. 49.
    Prasad NK, Kumar V (2015) Microstructure and magnetic properties of equiatomicFeNiCo alloy synthesized by mechanical alloying. J Mater Sci Mater Electron 26(12):10109–10118CrossRefGoogle Scholar
  50. 50.
    Kumar V, Shekhar R, Balasubramaniam R, Balani K (2012) Microstructure evolution and texture development in thermomechanically processed mg–Li–Al based alloys. Mater Sci Eng A 547:38–50CrossRefGoogle Scholar
  51. 51.
    Yousefi M, Sharafi S, Mehrolhosseiny A (2014) Correlation between structural parameters and magnetic properties of ball milled nano-crystalline Fe–co–Si powders. Adv Powder Technol 25(2):752–760CrossRefGoogle Scholar
  52. 52.
    Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1(1):22–31CrossRefGoogle Scholar
  53. 53.
    Cullity BD (1978) Elements of X-ray diffraction. Addison, WesleyGoogle Scholar
  54. 54.
    Baghbaderani HA, Sharafi S, Chermahini MD (2012) Investigation of nanostructure formation mechanism and magnetic properties in Fe45Co45Ni10 system synthesized by mechanical alloying. Powder Technol 230:241–246CrossRefGoogle Scholar
  55. 55.
    Khajepour M, Sharafi S (2012) Characterization of nanostructured Fe–co–Si powder alloy. Powder Technol 232:124–133CrossRefGoogle Scholar
  56. 56.
    Makino A, Inoue A, Masumoto T (1995) Nanocrystalline soft magnetic Fe–M–B (M=Zr,Hf,Nb) alloys produced by crystallization of amorphous phase (overview). Mater Trans, JIM 36(7):924–938CrossRefGoogle Scholar
  57. 57.
    Khodabakhshi F, Haghshenas M, Eskandari H, Koohbor B (2015) Hardness− strength relationships in fine and ultra-fine-grained metals processed through constrained groove pressing. Mater Sci Eng A 636:331–339CrossRefGoogle Scholar
  58. 58.
    Khanchandani H, Sharma P, Kumar R, Maulik O, Kumar V (2016) Effect of sintering on phase evolution in AlMgFeCuCrNi4. 75 high entropy alloy. Adv Powder Technol 27(1):289–294CrossRefGoogle Scholar
  59. 59.
    Sriraman KR, Raman SGS, & Seshadri SK (2007) Influence of crystallite size on the hardness and fatigue life of steel samples coated with electrodeposited nanocrystalline Ni–W alloys. Materials Letters 61(3):715–718.Google Scholar
  60. 60.
    Herzer G (1990) Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans Magn 26(5):1397–1402CrossRefGoogle Scholar
  61. 61.
    Herzer G (1992) Nanocrystalline soft magnetic materials. J Magn Magn Mater 112(1–3):258–262CrossRefGoogle Scholar
  62. 62.
    Razi M, Ghasemi A, Borhani GH (2014) Microstructural and magnetic properties of nanostructured Fe65Co35 powders prepared by mechanical alloying. Adv Mater Res 829:778–783CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Priyanka Sahu
    • 1
  • Atul Singh Bagri
    • 2
  • M. D. Anoop
    • 3
  • Manoj Kumar
    • 3
  • Vinod Kumar
    • 1
    Email author
  1. 1.Discipline of Metallurgy Engineering and Materials ScienceIndian Institute of TechnologyIndoreIndia
  2. 2.Department of Metallurgical and Materials EngineeringMNIT JaipurJaipurIndia
  3. 3.Department of PhysicsMNIT JaipurJaipurIndia

Personalised recommendations