Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of Sb, Tb3+ Doping on Optical and Electrical Performances of SnO2 and Si Based Schottky Diodes

  • 21 Accesses

  • 2 Citations

Abstract

(Sb, Tb3+)-doped SnO2 thin films were deposited on monocrystalline silicon (Si) and on porous silicon (PS) layer from sol-gel spin coating method. The photoluminescence spectrum shows that Tb3+ ions presents higher emission with the PS layer. The fabricated junctions are treated as a metal-semiconductor (MS) Schottky diodes. The current–voltage (I-V) characteristics of SnO2:Sb/p-Si (D1), SnO2:Sb:Tb3+/p-Si (D2) and SnO2:Sb:Tb3+/PS (p) (D3) were measured for these diodes at room temperature. Electronic parameters such as ideality factor, barrier height and series resistance were calculated and compared for the main junctions. Based on the thermoionic emission model, it appears that the contacts presents non-ideal I-V behaviour with a relatively high values of ideality factor (n = 12 for Si based diode, and n = 24 for PS based diode) and a relatively large values of series resistance RS (RS = 2 103 Ω for D3). After the incorporation of Tb3+, the junction characteristics show that the formed diode exhibits high forward current density and a decrease in the series resistance RS (RS = 600 Ω for D2). The non-ideality character of the elaborated MS junctions seems to be principally due to the effects of the interface. The relatively high values of the ideality factor was attributed to the sharing of the applied voltage V by a diffusion potential (VD) across the semiconductor space charge region and a potential (Vi) devoted to the interfacial layer formed between the silicon and the tin oxide. The trapped-limited current was found to dominate the current transport mechanisms through the fabricated junctions. The above results highlight the role of the interfacial layer and interface states in the determination of the electrical performance of Sb-doped SnO2/p-Si, (Sb, Tb3+) co-doped SnO2/p-Si and (Sb, Tb3+) co-doped SnO2/PS(p). They show that the simultaneous presence of Tb3+ ions and porous silicon layer allows an obvious enhancement of both optical and electrical properties of the main junction increasing then the applicability of SnO2/silicon based devices.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Riahi R, Derbali L, Ouertani R, Ezzaouia H (2017). Appl Surf Sci 404:34–39

  2. 2.

    Chandrasekaran S, Vijayakumar S, Nann T, Voelcker NH (2016). Int J Hydrog Energy 41:19915–19920

  3. 3.

    Mukhlis MI, Rasheed BG, Al-Hamdani AH, Judran AK (2017). Optik - International Journal for Light and Electron Optics 138:359–364

  4. 4.

    Kholostov K, Serenelli L, Izzi M, Tucci M, Balucani M (2015). Mater Sci Eng B 194:78–85

  5. 5.

    Zhang W, Yang B, Liu J, Chen X, Wang X, Yang C (2017). Sensors Actuators B Chem 243:982–989

  6. 6.

    Liu Y, Huang J, Yang J, Wang S (2017). Solid State Electron 130:20–27

  7. 7.

    Zhuo M, Chen Y, Sun J, Zhang H, Guo D, Zhang H, Li Q, Wang T, Wan Q (2013). Sensors Actuators B Chem 186:78–83

  8. 8.

    Tsai M-Y, Bierwagenb O, Speck JS (2016). Thin Solid Films 605:186–192

  9. 9.

    Mohamed IMA, Dao V-D, Yasin AS, Choi H-S, Barakat NAM (2016). Int J Hydrog Energy 41:10578–10589

  10. 10.

    Ling C, Xue Q, Han Z, Lu H, Xia F, Yan Z, Deng L (2016). Sensors Actuators B Chem 227:438–447

  11. 11.

    Karadeniz S, Tuğluoğlu N, Serin T, Serin N (2005). Appl Surf Sci 246:30–35

  12. 12.

    Dubow JB, Burk DE, Sites JR (1976). Appl Phys Lett 29:494

  13. 13.

    Karadeniz S, Tuğluoğlu N, Serin T (2004). Appl Surf Sci 233:5–13

  14. 14.

    Missoum I, Ocak YS, Benhaliliba M, Benouis CE, Chaker A (2016). Synth Met 214:76–81

  15. 15.

    Kakati J, Datta P (2015). Optik 126:1656–1661

  16. 16.

    Huan Wang, Pei Qin, Guobin Yi, , Xihong Zu, Li Zhang, Wei Hong, Xudong Chen, 2017 Mater Chem Phys 194: 42–48

  17. 17.

    Rhoderick EH, Williams RH (1988) Metal–semiconductor contacts, second ed. Clarendon Press, Oxford

  18. 18.

    Cowley AM, Sze SM (1965). J Appl Phys 36:3212

  19. 19.

    Ozdemir S, Altındal S (1994). Sol Energy Mater Sol Cells 32:115

  20. 20.

    Cova P, Singh A, Medina A, Masut RA (1998). Solid State Electron 42:477

  21. 21.

    Hanselaer PL, Laflere WH, Van Meirhaeghe RL, Cardon F (1984). J Appl Phys 56:2309

  22. 22.

    Fang H-W, Hsieh T-E, Juang J-Y (2015). Appl Surf Sci 345:295–300

  23. 23.

    Shinde SD, Jejurikar SM, Patil SS, Joag DS, Date SK, More MA, Kaimal S, Shripathi T, Adhia KP (2011) Sol. Stat Sci 13:1724–1730

  24. 24.

    Dökme İ, Altindal Ş, Bülbül MM (2006). Appl Surf Sci 252:7749–7754

  25. 25.

    Altındal Ş, Dökme İ, Bülbül MM, Yalçın N, Serin T (2006). Microelectron Eng 83:499–505

  26. 26.

    Hudait MK, Krupanidhi SB (2000). Solid State Electron 44:1089–1097

  27. 27.

    Moadhen A, Elhouichet H, Romdhane S, Oueslati M, Roger JA, Bouchriha H (2003). Semicond Sci Technol 18:703

  28. 28.

    Elhouichet H, Bessais B, Younès O, Ezzaouia H, Oueslati M (1997). Thin Solid Films 304:358–364

  29. 29.

    Elhouichet H, Othman L, Moadhen A, Oueslati M, Roger JA (2003). Mater Sci Eng B 105:8–11

  30. 30.

    Moadhen A, Elhouichet H, Canut B, CS Sandu MO, Roger JA (2003). Mater Sci Eng B 105:157–160

  31. 31.

    Dabboussi S, Elhouichet H, Ajlani H, Moadhen A, Oueslati M, Roger JA (2006). J Lumin 121:507–516

  32. 32.

    Elhouichet H, Moadhen A, Oueslati M, Férid M (2002). J Lumin 97:34–39

  33. 33.

    Sochacki M, Kolendo A, Szmidt J, Werbowy A (2005). Solid State Electron 49:585

  34. 34.

    Karataş Ş, Altındal Ş, Türüt A, Özmen A (2003). Appl Surf Sci 217:250–260

  35. 35.

    Mathieu H (1996) Physique des semiconducteurs et des composants électroniques. Edition MASSON

  36. 36.

    Belgacem CH, El-Amin AA (2015). Silicon 7:279–282

  37. 37.

    Ben Haj Othmen W, Ben Hamed Z, Sieber B, Addad A, Elhouichet H, Boukherroub R (2018). Appl Surf Sci 434:879–890

  38. 38.

    Kim C, Park A, Prabakar K, Lee C (2006). Mater Res Bull 41:253–259

  39. 39.

    Dimova Malinovska D, Nikolaeva M (2003). Vacuum 69:227–231

  40. 40.

    Hadj Belgacem C, El-Amine AA (2018). Silicon 10:1063

  41. 41.

    Fang HW, Hsieh TE, Juang JY (2013). Surf Coat Technol 231:214–218

  42. 42.

    Kobayashi H, Ishida T, Nakato Y, Tsubomura H (1991). J Appl Phys 69:1736

  43. 43.

    Card HC, Rhoderick EH (1971). J Phys D Appl Phys 4:1589

  44. 44.

    Zeyrek S, Altındal S, zer HY, Bulbul MM (2006). Appl Surf Sci 252:2999

  45. 45.

    A.Turut, B. Bati, A. Kokce, M. Saglam, N. Yalcin (1996). Phys Scr 53:118

  46. 46.

    Gökçen M, Altındal S, Karaman M, Aydemir U (2011). Physica B 406:4119–4123

  47. 47.

    Fang H-W, Hsieh T-E, Juang J-Y (2013). Surf Coat Technol 231:214–218

  48. 48.

    Aydın ME, Akkılıc K, Kılıcoglu T (2004). Physica B 352:312

  49. 49.

    Wu CY (1980). J Appl Phys 51:3786

  50. 50.

    Nasser R, ben haj Othmen W, Elhouichet H, Ferid M (2017). Appl Surf Sci 393:486–495

  51. 51.

    Martin-Palma RJ, Pascual L, Landa-Cànovas AR, Herrero P, Martinez-Duart JM (2006). Mater Sci Eng C 26:830–834

  52. 52.

    Schlamp MC, Peng X, Alivisatos AP (1997). J Appl Phys 82:5837

  53. 53.

    Ben-Chorin M, Möller F, Koch F (1994). Phys Rev B 49:2981–2984

  54. 54.

    Lampert MA, Mark P (1970) Current injection in solids, academic press, New York. London

  55. 55.

    Yakuphanoglu F, Tugluoglu N, Karadeniz S (2007). Physica B 392:188–191

  56. 56.

    Neelima V, Bhave M, Ethiraj S, Sainkar R, Ganesan V, Bhoraskar V, Kulkarni K (2001). Nanotechnology 12:290–294

Download references

Author information

Correspondence to Habib Elhouichet.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elhouichet, H., Othmen, W.B.H. & Dabboussi, S. Effect of Sb, Tb3+ Doping on Optical and Electrical Performances of SnO2 and Si Based Schottky Diodes. Silicon 12, 715–722 (2020). https://doi.org/10.1007/s12633-019-00164-y

Download citation

Keywords

  • Tin oxide
  • Porous silicon
  • Heterojunction
  • I-V characteristics
  • Rare earth doping