Advertisement

Silicon

pp 1–9 | Cite as

Influence of Low-Temperature Annealing on the Electrical Conductivity of SiOx Films

  • O. V. PylypovaEmail author
  • A. A. Evtukh
  • V. A. Skryshevsky
  • O. L. Bratus
Original Paper
  • 5 Downloads

Abstract

In this paper, the results on the conductivity of silicon enriched SiOx films and the influence of low temperature annealing at 450 °C in the H2 and vacuum are presented. SiOx films were prepared on Si substrate by low pressure chemical vapor deposition (LP CVD) with using SiH4, N2O as the precursor gases and H2 as a carrier gas. The measurements of current-voltage characteristics were carried out in the wide temperature range 95-334 K. It was revealed that the influence of atmosphere of the low temperature annealing is significant. In general case it was established that after the annealing of the initial film in the hydrogen the conductivity increases and after annealing in the vacuum decreases. Characteristic feature of all films (without and with annealing) is the conductivity according to the Mott’s law at low voltages (U < 1 V) in temperature range 295 < T < 345 K. The calculated densities of electron states (traps) in bandgap near the Fermi level from slope of curves in Mott’s coordinate are equal to N = 2.12 × 1017 eV−1 × cm−3 (initial film), N = 4.14 × 1019 eV−1 × cm−3, (H2), N = 6.62 × 1016 eV−1 × cm−3 (vacuum). At higher voltages and lower temperature another transport mechanisms have been revealed. Among them are space-charge limited current (SCLC), Poole-Frenkel mechanism and Fowler-Nordheim tunneling.

Keywords

SiOx film Low temperature annealing Electron transport Mott’s law 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Gavrylyuk OO, Semchuk OY, Steblova OV, Evtukh AA, Fedorenko LL, Bratus OL, Zlobin SO, Karlsteen M (2015) Influence of laser annealing on SiOx films properties. Appl Surf Sci 336:217–221.  https://doi.org/10.1016/j.apsusc.2014.11.066 CrossRefGoogle Scholar
  2. 2.
    Huang R, Zhang LJ, Gao DJ, Pan Y, Qin SQ, Tang PR, Cai YM, Wang YY (2011) Resistive switching mechanism in silicon highly rich SiOx(x < 0.75) films based on silicon dangling bonds percolation model. Appl Phys A Mater Sci Process 102:927.  https://doi.org/10.1063/1.4776695 CrossRefGoogle Scholar
  3. 3.
    Mehonic A, Cueff S, Wojdak M, Hudziak S, Jambois O (2012) Resistive switching in silicon suboxide films. J Appl Phys 111:074507.  https://doi.org/10.1063/1.3701581 CrossRefGoogle Scholar
  4. 4.
    O.L. Bratus’, A.A. Evtukh, V.A. Ievtukh, V.G. Litovchenko, J Non-Crystal Solids, 354 (2008)  https://doi.org/10.1016/j.jnoncrysol.2008.06.037, Nanocomposite SiO2(Si) films as a medium for non-volatile memory, 354, 4281Google Scholar
  5. 5.
    AA Evtukh, OV Pylypova,·O Martyniuk, H Mimura (2018) 8, 5.  https://doi.org/10.1007/s13204-018-0710-3
  6. 6.
    Shareef HN, Dimos D (1997) Leakage and Reliability Characteristics of Lead Zirconate Titanate Thin-Film Capacitors. J Am Ceram Soc 80:12–3132.  https://doi.org/10.1111/j.1151-2916.1997.tb03240.x Google Scholar
  7. 7.
    Lee JS (2011) Progress in non-volatile memory devices based on nanostructured materials and nanofabrication. J Mater Chem 21(37):14097.  https://doi.org/10.1039/C1JM11050K CrossRefGoogle Scholar
  8. 8.
    Sun J, Lindvall N, Cole M, Angel K, Wang T, Teo K, Yurgens A (2012) Low Partial Pressure Chemical Vapor Deposition of Graphene on Copper. IEEE Trans Nanotechnol 11(2):255–260.  https://doi.org/10.1109/TNANO.2011.2160729 CrossRefGoogle Scholar
  9. 9.
    Li M, Liu D, Wei D, Song X, Wei D, Wee A (2016) Controllable Synthesis of Graphene by Plasma-Enhanced Chemical Vapor Deposition and Its Related Applications. Adv Sci 3:11.  https://doi.org/10.1002/advs.201600003 Google Scholar
  10. 10.
    Ryu J, Kim Y, Won D, Kim N, Park J, Lee E-K, Cho S (2014) Fast Synthesis of High-Performance Graphene Films by Hydrogen-Free Rapid Thermal Chemical Vapor Deposition. ACS Nano 8(1):950–956.  https://doi.org/10.1021/nn405754d CrossRefGoogle Scholar
  11. 11.
    Koumetz SD, Pesant J-C, Dubois C (2008) A computational study of ion-implanted beryllium diffusion in gallium arsenide. Comput Mater Sci 43(4):902–908.  https://doi.org/10.1016/j.commatsci.2008.02.003 CrossRefGoogle Scholar
  12. 12.
    Wang H, Quan L, Hu B, Wei G, Jiang X (2017) Aerosol method assisted fabrication Ag@SiO2 and efficient catalytic activity for reduction of 4-nitrophenol. IET Micro Nano Lett 12:9–688.  https://doi.org/10.1049/mnl.2017.0010 Google Scholar
  13. 13.
    Bedra L, Thomann AL, Semmar N, Dussart R, Mathias J (2010) Highly sensitive measurements of the energy transferred during plasma sputter deposition of metals. J Phys D Appl Phys 43(6):065202.  https://doi.org/10.1088/0022-3727/43/6/065202 CrossRefGoogle Scholar
  14. 14.
    Perego M, Fanciulli M, Bonafos C, Cherkashi N (2006) Synthesis of mono and bi-layer of Si nanocrystals embedded in a dielectric matrix by e-beam evaporation of SiO/SiO2 thin films. Mater Sci Eng 26:5–7.  https://doi.org/10.1016/j.msec.2005.09.058 CrossRefGoogle Scholar
  15. 15.
    Tsoi E, Normand P, Nassiopoulou AG, loannou-Sougleridis V, Salonidou A, Giannakopoulos K (2005) Silicon nanocrystal memories by LPCVD of amorphous silicon, followed by solid phase crystallization and thermal oxidation. J Phys Conf Ser 10(1):31–34.  https://doi.org/10.1088/1742-6596/10/1/008 CrossRefGoogle Scholar
  16. 16.
    Alexandrov SE, Hitchman ML (2005) Chemical Vapor Deposition Enhanced by Atmospheric Pressure Non-thermal Non-equilibrium Plasmas. Chem Vap Depos 11(11–12):457–468.  https://doi.org/10.1002/cvde.200500026 CrossRefGoogle Scholar
  17. 17.
    Ivanda M, Gebavi H, Ristic D, Furic K, Music S, Ristic M, Zonja S, Biljanovic P, Gamulin O, Balarin M, Montagna M, Ferarri M, Righini GC (2007) Silicon nanocrystals by thermal annealing of Si-rich silicon oxide prepared by the LPCVD method. J Mol Struct 834–836:461–464.  https://doi.org/10.1016/j.molstruc.2006.09.036 CrossRefGoogle Scholar
  18. 18.
    Schroeder H (2015) Poole-Frenkel-effect as dominating current mechanism in thin oxide films—An illusion?! J Appl Phys 117:215103.  https://doi.org/10.1063/1.4921949 CrossRefGoogle Scholar
  19. 19.
    Popa M, Tiginyanu I, Ursaki V (2017) Growth and characterization of ZnS Se thin films deposited by spray pyrolysis. J Phys 62:19–26.  https://doi.org/10.1016/j.tsf.2018.08.018 Google Scholar
  20. 20.
    Wang Y, Qian X, Chen K, Fang Z, Li W, Xu J (2013) Resistive switching mechanism in silicon highly rich SiOx(x < 0.75) films based on silicon dangling bonds percolation model. Appl Phys Lett 102:042103.  https://doi.org/10.1063/1.4776695 CrossRefGoogle Scholar
  21. 21.
    Schumann E, Hübner R, Grenzer J, Gemming S, Krause M (2018) Percolated Si:SiO2 Nanocomposites: Oven- vs. Millisecond Laser-Induced Crystallization of SiOx Thin Films. Thin Films Nanomater 8(7).  https://doi.org/10.3390/nano8070525
  22. 22.
    Gould RD, Lopez MG (2003). Thin Solid Films 433:1–384CrossRefGoogle Scholar
  23. 23.
    Song HZ, Akahane K, Lan S, Xu HZ, Okada Y, Kawabe M (2001) In-plane photocurrent of self-assembledInxGa1−xAs/GaAs(311)Bquantum dot arrays. Phys Rev B 64:085303.  https://doi.org/10.1103/PhysRevB.64.085303 CrossRefGoogle Scholar
  24. 24.
    Czarnacka K, Komarov FF (2016) Photonics applications in astronomy, communications, industry, and high-energy physics experiments, p 100310D.  https://doi.org/10.1117/12.2249111 Google Scholar
  25. 25.
    Surana K, Lepage H, Lebrun JM, Doisneau B, Bellet D, Vandroux L, Thon P, Mur P (2012). Nanotechnology 23(10):105401.  https://doi.org/10.1088/0957-4484/23/10/105401 CrossRefGoogle Scholar
  26. 26.
    Puglisi RA, Vecchio C, Lombardo S, Lorenti S, Camalleri MC (2010) Charge transport in ultrathin silicon rich oxide/SiO2 multilayers under solar light illumination and in dark conditions. J Appl Phys 108:023701.  https://doi.org/10.1063/1.3463381 CrossRefGoogle Scholar
  27. 27.
    Chiu FC (2014) A Review on Conduction Mechanisms in Dielectric Films. Adv Mater Sci Eng 2014:1–18.  https://doi.org/10.1155/2014/578168 Google Scholar
  28. 28.
    Stadele M, Sacconi F, Di Carlo A, Lugli P (2003) Enhancement of the effective tunnel mass in ultrathin silicon dioxide layers. J Appl Phys 93(5):2681–2690.  https://doi.org/10.1063/1.1541107 CrossRefGoogle Scholar
  29. 29.
    Evtukh AA, Druzhinin A, Ostrovskii I, Kizjak A, Grigoriev A, Steblova O, Nichkalo S (2014). Adv Mater Res 854.  https://doi.org/10.4028/www.scientific.net/AMR.854.83
  30. 30.
    Kizjak A, Evtukh A, Steblova O, Pedchenko Y (2016) Electron Transport through Thin SiO<sub>2</sub> Films Containing Si Nanoclusters. J Nano Res 39:169–177.  https://doi.org/10.4028/www.scientific.net/ CrossRefGoogle Scholar
  31. 31.
    N. F. Mott, E. A. Davis, & K. Weiser, (Phys Today, 1972), 25, 55  https://doi.org/10.1063/1.3071145, Electronic Processes in Non‐Crystalline Materials
  32. 32.
    Rinnert H, Jombois O, Vergnat M, Molinari M (2005) Study of the photoluminescence of amorphous and crystalline silicon clusters in SiOx thin films. Opt Mater 27:983–987.  https://doi.org/10.1016/j.optmat.2004.08.048 CrossRefGoogle Scholar
  33. 33.
    Godet C (2002) Variable range hopping revisited: the case of an exponential distribution of localized states. J Non-Crystal Solids 299-302(1):333–338.  https://doi.org/10.1016/S0022-3093(01)01008-0 CrossRefGoogle Scholar
  34. 34.
    Varanasi VG, Ilyas A, Velten MF, Shah A, Lanford WA, Aswath PB (2017) Role of Hydrogen and Nitrogen on the Surface Chemical Structure of Bioactive Amorphous Silicon Oxynitride Films. J Phys Chem B 121(38):8991–9005.  https://doi.org/10.1021/acs.jpcb.7b05885 CrossRefGoogle Scholar
  35. 35.
    Lampert MA, Mark P (1970). Current injection in solids. NY Academic Press, New York.  https://doi.org/10.1126/science.170.3961.966-a
  36. 36.
    Mark P, Helfrich W (1962) Space‐Charge‐Limited Currents in Organic Crystals. J Appl Phys 33(1):205–215.  https://doi.org/10.1063/1.1728487 CrossRefGoogle Scholar
  37. 37.
    Kumar V, Jain SC, Kapoor AK, Geens W, Aernauts T, Poortmans J, Mertens R (2003) Trap density in conducting organic semiconductors determined from temperature dependence of J−V characteristics. J Appl Phys 94:1283–1285.  https://doi.org/10.1063/1.1582552 CrossRefGoogle Scholar
  38. 38.
    A.K. Jonscher, R.M. Hill (1975) Physics of Thin Films In: G. Hass, M.H. Francombe, and R.W. Hoffman (eds) Vol. 8. Academic Press, New York, p 360Google Scholar
  39. 39.
    Sze S.M, Ng KK (2006). Physics of semiconductor devices. John wiley & sons.  https://doi.org/10.1002/0470068329
  40. 40.
    Lisovskii IP, Litovchenko VG, Lozinskii VB, Frolov SI, Flietner H, Fussel W, Schmidt E (1995) IR study of short-range and local order in SiO2 and SiOx films. J Non-Cryst Solids 187:91–95.  https://doi.org/10.1016/0022-3093(95)00118-2 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of High TechnologiesTaras Shevchenko National University of KyivKievUkraine
  2. 2.V. Lashkaryov Institute of Semiconductor Physics NAS of UkraineKyivUkraine

Personalised recommendations